Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение свободного вектора и операций над ним.





Вектор называется свободным, если его значение не меняется при произвольном параллельном переносе. Свободным В. является, например, скорость движения материальной точки.

Операции над свободными векторами: сложение и умножение на число
Определение 9::Сумма свободных векторов. Пусть a, b V3. Возьмем произвольно точку О. Тогда ! ОА a и ! AB b т.ч. OB a+b, т.е. a+b = { CD: CD = OB} Корректность сложения: OB a+b, O'B' a+b OB = O'B'.
Определение 10::Пусть a - свободный вектор, AB – его реализация, тогда BA является реализацией свободного вектора (-a). (-a) – обратный вектордля a, т.е. (-a) = { BA: AB a }
Определение 11::Умножение вектора на число: 1) λ•θ = θ для λ R. 2) a ≠ θ, AB a, отрезок AB лежит на прямой l. 2.1) λ = 0 λ∙a= θ. 2.2) λ > 0 AC λ∙a, где AC т.ч. |AC| = λ•|AB|, C l и т. B и C находятся по одну сторону от т. А. 2.3) λ < 0 AD λ∙a, где AD т.ч. |AD| = |λ|∙|AB|, D l и т. B и D находятся по разные стороны от т. А.
Свойства операций над векторами: a, b, c V3, λ, μ R 1) Коммутативность сложения a +b = b +a. 2) Ассоциативность сложения a +b +c = (a +b)+c = a +(b +c). 3) a + θ = a. 4) a +(-a) = θ. 5) Ассоциативность умножения на число λ(μ∙a) = (λμ)∙a 6) 1∙a = a. 7) Дистрибутивность умножения на число относительно сложения векторов λ∙(a +b) = λ∙a +λ∙b. 8) Дистрибутивность умножения на число относительно сложения чисел (λ+μ)∙a = λ∙a +μ∙a. 1010. Определение скалярного произведения векторов и его свойства. Скалярным произведением двух векторов и называется число, обозночаемое и равное произведению модулей данных векторов на косинус угла между ними: a•b=|a|•|b|•cos(a^b) где (a^b) обозначает меньший угол между направлениями векторов a и b. Отметим, что всегда(0≤a^b≤π). Основные свойства скалярного произведения векторов: 1. a •b = b• a; 2. (λa)•b= •(λb) = λ (a•b); 3. a•(b+с) = a•b+a•с; 4. a•b = | a | прa b = |b| прb| a |; 5. a • a = | a |²; 6. a • b = 0, если a ┴ b.

 







Дата добавления: 2015-09-07; просмотров: 747. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия