Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определения и примеры векторного пространства, векторов, линейной комбинации векторов.





Определения и примеры векторного пространства, векторов, линейной комбинации векторов.

Непустое множ-во, в кот-ом опред-ны 2 операции: сложение и умножение на число, относит-но кот-х выпол-ны 8 аксиом назыв-ся линейн.вектор. прост-вом.
пример: n-мерные векторы образ-т векторное простр-во, обозначаемое Rn

Векторы а1, а2…аm простр-ва Rn наз-ся лин.независ-ми, если урав-е

Имеет единст.нулевое решение λ1=0,…,λk=0

Например, система двух векторов 1 = (1, 0) и 2 = (0, 2) является линейно независимой;

Векторы а1, а2…аm простр-ва Rn наз-ся лин.завис-ми, если найдутся числа λ1,…, λk не равные нулю, для кот-ых выполнено равенство

свойства линейно зависимой системы векторов.

1. Система, состоящая из одного ненулевого вектора, линейно независима.

2. Система, содержащая нулевой вектор, всегда линейно зависима.

3. Система, содержащая более одного вектора, линейно зависима тогда и только тогда, когда среди ее векторов содержится по крайней мере один вектор, который линейно выражается через остальные.

 

Линейной комбинацией векторов (12.6) называется вектор вида

где λ1, λ2,..., λk — любые действительные числа.

Например, пусть даны три вектора: 1 = (1, 2, 0), 2 = (2, 1, 1) и 3 = (-1, 1, -2). Их линейной комбинацией с коэффициентами соответственно 2, 3 и 4 является вектор = (4, 11, -5).

В случае равенства (12.7) говорят также, что вектор линейно выражается через векторы (12.6) или разлагается по этим векторам.







Дата добавления: 2015-09-07; просмотров: 769. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия