Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Енергія зарядженого тіла і конденсатора. Енергія і густина енергії електричного поля





Розглянемо відокремлений провідник з електроємністю і електричним зарядом . Потенціал провідника рівний

. (3.116)

Перенесемо з нескінченності, де потенціал рівний нулю, елементарний заряд на поверхню провідника. При цьому електричним полем буде виконана робота

. (3.117)

Між однойменними електричними зарядами і діють сили відштовхування. Тому при наближенні елементарного заряду до заряду переміщення відбувається в напрямку протилежному до напрямку дії сили. Внаслідок цього електричне поле виконує від’ємну роботу.

Зміна потенціальної енергії рівна виконаній роботі з протилежним знаком, тобто

. (3.118)

Підставивши (3.116) в (3.118) і проінтегрувавши, дістанемо формулу енергії зарядженого провідника

, (3.119)

де С – постійна інтегрування. Будемо вважати, що енергія незарядженого провідника рівна нулю

; . (3.120)

Підставимо умови (3.120) у вираз (3.119) і визначимо постійну інтегрування С

. (3.121)

Підставимо (3.121) у формулу (3.119) і одержимо формулу потенціальної енергії зарядженого провідника

. (3.122)

Використовуючи формулу (3.116) можна отримати інші формули для енергії зарядженого провідника:

; . (3.123)

Розглянемо конденсатор з електроємністю с, якому наданий електричний заряд q. Напруга між обкладками конденсатора рівна

. (3.124)

Перенесемо з однієї обкладки на іншу елементарний заряд dq. При цьому електричним полем буде виконана від’ємна робота, оскільки переміщення заряду dq здійснюється проти сили електричного поля

. (3.125)

Зміна потенціальної енергії конденсатора рівна виконаній роботі з протилежним знаком, тому вона рівна

. (3.126)

Проінтегруємо (3.126) і використовуючи формулу (3.124) отримаємо формули енергії зарядженого конденсатора

. (3.127)

Знайдемо енергію зарядженого плоского конденсатора. Підставимо вираз для електроємності плоского конденсатора (3.103) у формулу (3.127)

. (3.128)

Введемо позначення

, (3.129)

де – об’єм простору між обкладками плоского конденсатора. Підставимо (3.129) і вираз (3.101) напруженості електричного поля всередині плоского конденсатора у формулу (3.128) і одержимо

. (3.130)

Враховуючи зв’язок між напруженістю та індукцією електричного поля (3.7) формулу (3.130) можна представити також у вигляді

. (3.131)

Формули (3.130) і (3.131) виражають енергію зарядженого плоского конденсатора через такі характеристики електричного поля як напруженість та індукція, а також через об’єм простору в якому локалізоване електричне поле. Тому можна зробити висновок, що електричне поле володіє енергією.

Густиною енергії електричного поля називається фізична величина рівна енергії електричного поля в одиниці об’єму простору де міститься електричне поле

. (3.132)

Якщо електричне поле однорідне, то густину енергії електричного поля можна визначити за формулою

. (3.133)

Підставимо вирази (3.130) і (3.131) у формулу (3.133). отримаємо формули густини енергії електричного поля

. (3.134)

Із формули (3.132) визначимо диференціал енергії електричного поля

. (3.135)

Підставимо (3.134) в (3.135)

. (3.136)

Проінтегруємо вираз (3.136) по деякому об’єму

. (3.137)

Ці формули дозволяють визначити енергію неоднорідного електричного поля.

 







Дата добавления: 2015-09-07; просмотров: 712. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия