Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Робота і потужність струму. Закон Джоуля-Ленца





Розглянемо ділянку кола опором R до якої прикладена напруга U і по якій тече струм силою І. Із означення електричної напруги (3.160) визначимо елементарну роботу по переміщенню по колу елементарного заряду dq

. (3.211)

Із означення сили струму (3.156) визначимо елементарний заряд

. (3.212)

Підставимо вираз (3.212) у формулу (3.211)

. (3.213)

Проінтегруємо вираз (3.203) і отримаємо формулу роботи електричного струму

. (3.214)

У випадку постійного струму, коли , , робота електричного струму визначається за формулою

. (3.215)

Потужність рівна роботі виконаній за одиницю часу

. (3.216)

Підставимо (3.213) у формулу (3.216). Отримаємо формулу потужності струму

. (3.217)

Якщо електричний струм не виконує роботу проти зовнішніх сил і не змінюється внутрішня енергія провідника то, як випливає з першого закону термодинаміки, робота струму рівна кількості теплоти, яка виділяється в провіднику

. (3.218)

З закону Ома для ділянки кола випливає

. (3.219)

Підставимо (3.219) у формулу (3.218)

. (3.220)

У випадку постійного струму формула (3.220) набере вигляду

. (3.221)

Формули (3.220) і (3.221) – це закон Джоуля-Ленца в інтегральній формі: кількість теплоти, яка виділяється в провіднику при проходженні електричного струму, прямо пропорційна квадрату сили струму, опору провідника і часу проходження струму

Розглянемо циліндричний провідник з площею поперечного перерізу , довжиною , по якому тече струм силою . Тоді за час в ньому виділиться кількість теплоти , яка згідно з формулою (3.221) рівна

. (3.222)

З формул (3.164) і (3.159) отримаємо

; . (3.223)

Підставимо (3.223) у формулу (3.222)

(3.224)

де – об’єм провідника.

Питомою тепловою потужністю струму називається фізична величина, рівна кількості теплоти, яка виділяється в одиниці об’єму провідника за одиницю часу

. (3.225)

Підставимо (3.224) у формулу (3.225) отримаємо

. (3.226)

Формула (3.226) – це закон Джоуля-Ленца в диференціальній формі: питома теплова потужність струму прямо пропорційна питомому опору провідника і квадратові густини струму.

Використовуючи формули (3.173) вираз (3.226) можне бути представлений у вигляді

. (3.227)

Формули (3.227) – це другий варіант закону Джоуля-Ленца в диференціальній формі: питома теплова потужність струму прямо пропорційна питомій електропровідності провідника і квадрату напруженості електричного поля.

 







Дата добавления: 2015-09-07; просмотров: 1586. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия