Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение конечного числа видов по выборке - тупик





Попытки определить конечное число видов в коллекции из местообитания

или региона связаны с двумя методами. Наиболее популярно было использование логнормальной модели видового разнообразия, применимость которой в оценках локального разнообразия вообще сомнительна. Хьюз отмечает, что многие примеры такого ее использования были неправомерны из-за отсутствия моды в вычисленных распределениях. Он показал, что данные должны содержать не менее 85% от окончательного числа видов

для корректного расчета. Иллюстрацией могут послужить результаты Песенко: можно ли допустить, что 25% видов, в основном из классов средних обилий, не попало в коллекцию, включающую свыше 22000 особей диких пчел, собранных в течение 7 лет? В качестве альтернативы применялась также регрессия. Были тестированы: выражение Кленча

y = ax /(1+ bx),

логарифмическая регрессия

y =1/ z * ln (1+ zax), где z =1 e (b),

и экспонента

y = ab (1 e (bx)).

где: y - число видов, x - продолжительность отбора проб или объем выборки, a и b - коэффициенты.

Предполагается, что адекватность модели зависит от однородности место_

обитания и особенностей фауны. Соответственно, модели подбираются для точной аппроксимации и прогноза на ее основе. При этом все четыре моделировавшиеся кривые не имели явного плато.

Зависимость "число видов - продолжительность сбора", или "число видов -число образцов", аналогична хорошо известной зависимости "число видов -площадь". Суханов и Немченко (1989) оценивали привычную мультипликативную зависимость в форме

y = a * xb,

линейную логарифмическую

y = a + b * ln (x),

нелинейную логарифмическую модель Фишера

y = b * ln (1+ x / a)

и гиперболу

y = abx /(1+ bx)

Гипербола идентична модели Кленча, так как любой коэффициент " a " последней модели может быть выведена путем подбора " a " гиперболы к любому значению " b ". Гипербола также известна, как логистическое выражение. Тестируя данные по растительности, Суханов и Немченко признали лучшей модельФишера. Заметим, что только исследование кривой с хорошо выраженным плато может выявить лучшую модель. Поэтому для тестирования использована кривая накопления видов малочисленного таксона - шмелей. Здесь прирост видов прекратился приблизительно к середине коллекции; для сравнения использовалась коллекция тлей, без плато. Оказалось, что даже данные, где плато кривой уже появилось, не дают возможности определить лучшую модель; для этого необходимо достаточно длинное плечо плато по отношению ко всей кривой! Соответственно, прогноз оказывается весьма далеким от реальности. Таким образом, оба метода не имеют приемлемой прогнозной силы. В то же время, абсолютным чемпионом по близости аппроксимации всех реальных использованных данных о кривых накопления видов является степенная модель, _ уровень объяснения кривой (R2) редко бывает ниже 90%.







Дата добавления: 2015-09-07; просмотров: 399. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия