Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Занятие 14. Тригонометрические ряды Фурье.





Определение 1. Ряд вида

(14.1)

называется тригонометрическим рядом. (Здесь знак суммы относится к обоим слагаемым, стоящим справа от него.)

Частичные суммы тригонометрического ряда являются линейными комбинациями функций из системы

(14.2)

Определение 2. Система функций (14.2) называется тригонометрической системой.

Лемма 1. Тригонометрическая система (14.2) имеет следующие свойства.

1. Интеграл на отрезке от произведения двух различных функций этой системы равен нулю. (Это свойство называется свойством ортогональности системы (14.2)), т.е.

(14.3)

2. (14.4)

 

Теорема 14.1. Пусть

(14.5)

и ряд (14.5) сходится равномерно на отрезке , тогда

(14.6)

Заметим, что формулы (14.6) имеют смысл не только для непрерывных на отрезке функций, а также и для функций, интегралы от которых сходятся абсолютно на этом отрезке. (Говорят, что сходится абсолютно, если сходится .) Этому условию удовлетворяют, в частности, функции, имеющие на отрезке конечное число разрывов первого рода и кусочно-дифференцируемые на нём.

Если в точке существуют конечные пределы , и односторонние производные и , то ряд Фурье функции сходится в этой точке и его сумма равна

. (14.7)

Если существуют конечные пределы , и односторонние производные и , то ряд Фурье функции сходится в точках и и его сумма в этих точках равна

. (14.8)

В точках непрерывности функции значения суммы ряда совпадают со значениями функции.

 

 

Пример 14.1. Разложить в ряд Фурье функцию

Решение. Вычислим коэффициенты разложения:

 

 

,

,

Таким образом, при чётном и при нечётном, т.е.

,

следовательно,

.

Полученный ряд сходится к при и , а в точке , в соответствии с (14.7),

 

. (14.9)

 

Пример 14.2. Функцию , заданную в промежутке , разложить в ряд Фурье по косинусам.

Решение. Продолжив функцию в промежуток чётным образом, получим:

.

В этом случае .

,

т.е.

,

следовательно,

Пример 14.3. Разложить в ряд Фурье в интервале функцию

.







Дата добавления: 2015-09-07; просмотров: 437. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия