Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

На дом № 2868, 2878, 2880, 2882, 2884, 2886, 2903, 2906, 2914, 2922, 2924, 2931, 2935.





Рассмотрим соотношение коэффициентов степенного ряда

и многочлена Тейлора функции в окрестности точки

.

В соответствии с утверждением теоремы 12.2 степенной ряд в области его сходимости можно почленно дифференцировать любое число раз, т.е.

, (13.1)

Полагая в (13.1) , получим

, , ,

откуда следует

(13.2)

Эти выражения для называются коэффициентами Тейлора функции в точке . Формально составленный ряд с этими коэффициентами

(13.3)

называется рядом Тейлора функции по степеням или рядом Маклорена в случае .

Рассмотрение вопроса о том, когда в формуле (13.3) вместо знака соответствия можно поставить знак равенства, мы вынуждены отложить. Будем считать, что функция может быть представлена своим рядом Тейлора или Маклорена в области сходимости ряда.

Получим разложения некоторых функций по степеням , находя коэффициенты по формуле (13.2).

 

1. , ,

() (13.4)

Определим радиус сходимости полученного ряда:

,

следовательно, ряд (13.4) сходится на всей числовой оси при .

 

2. .

, ,

, ,

и т.д.

Очевидно, что , , следовательно

. (13.5)

Определим радиус сходимости ряда

следовательно, ряд (13.5) сходится на всей числовой оси.

 

3. .

Почленным дифференцированием ряда (13.5) получим:

. (13.6)

 

4. .

В случае целого положительного это бином Ньютона и в разложении содержится конечное число членов. Если же отлично от целого числа, то производные имеют вид

,

откуда следует, что

для .

Получаемый ряд называется биномиальным:

. (13.7)

Определим радиус сходимости полученного ряда:

следовательно, ряд сходится на интервале .

Ряд для функции есть частный случай биномиального ряда при и может быть получен из (13.7) подстановкой :

, , (13.8)

Ряд для функции легко получить из предыдущего выражения:

, . (13.9)

Используя возможность почленного интегрирования степенных рядов (теорема 12.3), найдем разложения для функций и .

.

Подставим в этот интеграл ряд (13.8), получим:

.

Таким образом,

. (13.10)

Разложение для будем искать, исходя из соотношения

в которое подставим ряд

.

В результате почленного интегрирования получаем:

. (13.11)

Непосредственное вычисление коэффициентов Тейлора по формулам (13.2) часто приводит к громоздким выкладкам, поэтому представляют интерес искусственные приёмы разложения функций в ряды с использованием формул (13.4) – (13.11), которые позволяют существенно упростить дело.

 

Пример 13.1. Разложить в ряд Маклорена функцию .

Решение. По формуле (13.4) . Пусть тогда при будет и формулу (13.4) можно использовать. Получаем:

.

 

Пример 13.2. Разложить по степеням функцию .

Решение. Воспользуемся разложением (13.10):

, полагая ,

Условие сходимости ряда: или .

Пример 13.3. Разложить в ряд Маклорена функцию .

Решение. Поскольку , запишем

,

.

Вычитая из первого равенства второе, получим:

.

 

Пример 13.4. Получить ряд Маклорена для интегрального синуса

.

Решение. Воспользуемся разложением (13.5) и проинтегрируем ряд почленно:

 

Контрольные вопросы.

 

  1. Запишите ряда Тейлора функции .
  2. Что называется рядом Маклорена функции ?
  3. Выпишите разложения в ряд Маклорена основных элементарных функций.

 

 







Дата добавления: 2015-09-07; просмотров: 378. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия