Студопедия — На дом № 2842,2844, 2846, 2856, 2860, 2864.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

На дом № 2842,2844, 2846, 2856, 2860, 2864.






Важным случаем функциональных рядов являются степенные ряды:

(12.1)

или

.

Для выяснения свойств степенных рядов достаточно ограничиться рассмотрением рядов вида (12.1), так как ряд по степеням легко свести к виду (12.1) заменой переменной , т.е. переносом начала координат в точку . Для нахождения области сходимости степенного ряда сформулируем следующую теорему.

Теорема 12.1. (Абеля)Пусть степенной ряд (12.1) сходится в точке Тогда он сходится абсолютно в любой точке х, для которой и равномерно в любой области . Если степенной ряд (12.1) расходится в точке , то он расходится и во всех точках таких, что .

Для определения области сходимости степенного ряда используется либо признак Даламбера, либо признак Коши.

Рассмотрим степенной ряд

. (12.2)

Вычислим предел

. (12.3)

Если существует предел (12.3), то ряд (12.2) сходится, если , и расходится, если . Следовательно, ряд (12.1) сходится абсолютно, если

,

и расходится, если

.

Определение. Число такое, что для всех x, удовлетворяющих условию , ряд (12.2) сходится, а для всех х, удовлетворяющих условию , ряд расходится, называется радиусом сходимости ряда (12.1).

Формула для радиуса сходимости, получаемая с помощью признака Даламбера, имеет вид

(12.4)

Если же к ряду (12.2) применить признак Коши, то получим соотношение

,

из которого следует, что ряд (12.2) сходится, если , расходится, если , а радиус сходимости ряда (12.1) определяется по формуле

, (12.5)

которая носит название формулы Коши – Адамара.

Пример 12.1. Найти область сходимости ряда

при .

Решение. По признаку Даламбера:

что означает, что ряд сходится на всей оси Х.

 

Пример 12.2. Найти область сходимости ряда

Решение. По формуле Коши – Адамара (12.5) находим

,

т.е. ряд сходится в области . При получаем

,

т.е. необходимый признак сходимости не выполнен, следовательно, в точке исследуемый ряд расходится. Расходимость ряда в точке доказывается аналогично.

 

Пример 12.3. Найти область сходимости ряда

. (12.6)

Решение. Следует отметить, что формула (12.4) для радиуса сходимости выведена в предположении, что степенной ряд (12.1) содержит все степени переменной х. В нашем случае равны нулю коэффициенты при чётных степенях, поэтому

,

т.е. формулу (12.4) применить нельзя. Однако применение признака Даламбера возможно и приводит к соотношению

.

Это означает, что ряд (12.6) сходится, если , т.е. в области В точке общий член ряда

.

Согласно второму признаку сравнения этот ряд расходится вместе с гармоническим рядом, с которым производится сравнение: :

.

При исследуемый ряд принимает вид и сходится как ряд Лейбница. Следовательно, промежуток сходимости ряда: . Причем при ряд сходится условно, а при абсолютно.

 

Пример 12.4. Найти область сходимости ряда

. (12.7)

Решение. Степени входят в ряд с пропусками, поэтому опять применяем признак Даламбера непосредственно:

при .

Степенной ряд сходится равномерно при , причем число как угодно близко к радиусу сходимости , но не равно ему. Поэтому для степенных рядов справедливы следующие утверждения.

Теорема 12.2. В области равномерной сходимости r степенной ряд (12.1) можно почленно дифференцировать любое число раз, причем радиусы сходимости получаемых рядов также равны r.

Теорема 12.3. В области равномерной сходимости r степенной ряд (12.1) можно почленно интегрировать, причём полученный ряд

сходится в той же области r.

Пример 12.5. Найти сумму ряда

, .

Решение. Обозначим сумму ряда через и продифференцируем ряд почленно:

при .

После интегрирования получим

при .

 

Контрольные вопросы.

 

  1. Запишите общий вид степенного ряда.
  2. Сформулируйте теорему Абеля.
  3. Дайте определение радиуса сходимости степенного ряда.
  4. Напишите формулу Коши-Адамара.
  5. Сформулируйте теорему о почленном дифференцировании степенного ряда.
  6. Сформулируйте теорему о почленном интегрировании степенного ряда.

 

 







Дата добавления: 2015-09-07; просмотров: 471. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия