ПРОИЗВОДСТВА ИСКУССТВЕННОГО ХОЛОДА
ТЕРМОДИНАМИЧЕСКИЕ ОСНОВЫ Первый закон термодинамики, являющийся частным выражением всеобщего закона сохранения энергии, устанавливает принцип эквивалентности теплоты и механической энергии. Часть теплоты, подведенной извне к замкнутой термодинамической системе, расходуется на изменение внутренней энергии системы, а другая часть расходуется на совершение внешней механической работы. Рассматривая второе слагаемое правой части уравнения как часть теплоты, затрачиваемой на получение механической работы, можем написать где L - механическая работа, Н • м; А - термический эквивалент механической работы. В Международной системе единиц СИ 1 Дж теплоты равен 1 Дж работы (1 Дж = 1 Н • м). Поэтому А = 1 и не имеет размерности В дальнейшем в наших уравнениях мы не будем учитывать А Поделив уравнение на массу рабочего тела М кг, получим уравнение первого закона термодинамики для удельных, отнесенных к 1 кг рабочего тела энергий: Обратный цикл Карно. Известной демонстрацией первого закона термодинамики является термодинамический цикл Карно (рис. 6.19, а), в котором рабочее тело при подводе к нему теплоты q расширяется по изотерме 7-2, совершая полезную работу 7 при максимально возможном КПД. Дальнейшее расширение рабочего тела совершается за счет внутренней энергии по адиабате 2-3. Увеличение объема рабочего тела вызывает перемещение поршня слева направо. Затем от рабочего тела отводится теплота q что ведет к уменьшению объема в изотермическом процессе 3-4. Далее тело сжимается в адиабатическом процессе 4-1. Уменьшение объема рабочего тела вызывает перемещение поршня справа налево. Необходимое условие работы цикла - наличие надежного источника теплоты q на одной стороне двигателя Карно и источника холода, поглощающего теплоту q0, на другой стороне. Заметим, что изменение объема рабочего тела в изотермическом процессе сопровождается фазовыми превращениями. Так, в процессе 1-2 жидкое рабочее тело кипит, превращаясь в пар, а в процессе 3-4 пар конденсируется, уменьшая объем. Полезная удельная работа, полученная в цикле в результате затраты теплоты q, пропорциональна площади криволинейного четырехугольника 1-2-3- 4и равна: В дальнейшем удельную теплоту и удельную работу будем обозначать малыми буквами (q и l) и в тексте их будем именовать для краткости просто теплотой и работой. Если теплоту q0 подводить в изотермическом процессе испарения рабочего тела 4-3 (рис. 6.19, б), а теплоту q отводить в изотермическом процессе конденсации 2-1, осуществится обратный цикл Карно. Подобный цикл реализуется в холодильных машинах и носит название холодильного цикла. Холодильную машину можно рассматривать как некий тепловой насос, перекачивающий теплоту от источника с низкой температурой к источнику с более высокой температурой. В отличие от прямого цикла Карно, где была совершена работа l за счет подвода теплоты q, в обратном цикле все происходит наоборот. Теплота q отводится, если на это затрачивается работа в процессах сжатия 3-2 и 2-1. Последнее полностью согласуется со вторым законом термодинамики: Теплота не может сама собой (без затраты работы) переходить от тела с низкой температурой к телу с высокой температурой. Процессы в прямом и обратном цикле Карно необратимы, т.е. не могут совершаться самопроизвольно, без подвода энергии извне. Для обратного цикла Карно справедливо уравнение: где qо - количество теплоты, отбираемое от охлаждаемой среды 1 кг рабочего тела и называемое удельной холодопроизводительностью, Дж/кг. Соответственно величину Q0 (Дж) будем называть холодопроизводителъностъю. Простейшая холодильная машина изображена на рис. 6.20. В охлаждаемой камере расположен испаритель, представляющий собой систему оребренных труб, в которых кипит и выпаривается рабочее тело - хладагент. Кипение происходит при низком давлении рисп и соответствующей этому давлению температуре Тисп. Для поддержания процесса парообразования кипящей жидкости необходимо непрерывно сообщать теплоту, количество которой зависит от величины скрытой теплоты парообразования для данного хладагента в данных условиях. Эта теплота отбирается от воздуха и тел, находящихся в камере и имеющих температуру выше, чем температура кипения хладагента в испарителе. Т.О. и происходит охлаждение тел в холодильной камере. Низкое давление в испарителе поддерживается компрессором, который непрерывно отсасывает пары хладагента, сжимает их до давления ркон и подает в конденсатор. В конденсаторе при охлаждении воздухом или водой отводится теплота q и при давлении Ркон и температуре Ткон происходит конденсация паров хладагента. Жидкий хладагент поступает из конденсатора в испаритель через регулирующий вентиль, и цикл повторяется. Регулирующий (дроссельный) вентиль поддерживает необходимый перепад давления Рkoн/Рисп. Изменяя перепад давления, можно регулировать температуру кипения в испарителе Tисп и, следовательно, изменять температуру в холодильной камере. Заметим, что в терминологии, традиционно принятой в холодильной технике, имеется некоторая несогласованность с принятыми нами понятиями и терминами. Процесс выпаривания хладагента, сопровождаемый кипением, неправильно называют испарением. Чтобы не вступать в противоречия с многочисленной литературой по холодильной технике, и мы условно будем называть выпаривание хладагента испарением. Всякая паровая холодильная машина должна иметь четыре основные части: испаритель, отбирающий теплоту из охлаждаемого помещения; конденсатор, отдающий теплоту в окружающую среду; компрессор, засасывающий пары хладагента и сжимающий их; устройство, обеспечивающее поддержание разности давления в конденсаторе и испарителе, регулирующий вентиль. При анализе работы поршневого компрессора, как и при анализе прямого и обратного циклов Карно, мы пользуемся рv диаграммой. Для анализа и расчета циклов холодильных машин удобнее пользоваться sT и pi диаграммами. Энтропия является мерой интенсивности тепловой энергии: Энтропия наравне с давлением, удельным объемом и температурой является функцией состояния рабочего тела. Она изменяется с изменением всех или некоторых из этих параметров. Чем меньше изменение энтропии в процессе, тем совершеннее процесс. В sТ диаграмме по оси ординат откладывают температуру Т в градусах Кельвина, а по оси абсцисс - удельную энтропию s в Дж/К. Поле диаграмм (рис. 6.21, а, б) разделено на три области двумя пограничными кривыми, сходящимися в верхней критической точке К, соответствующей критической температуре. При температуре сверх критической перегретый пар (газ) не может быть обращен в жидкость ни при каком увеличении давления. Левая пограничная кривая х=0 отделяет область влажного пара (под кривой) от области переохлажденной жидкости (над кривой). Здесь х - степень сухости пара - показывает, какое количество сухого пара содержится в 1 кг влажного пара. Правая пограничная кривая х = 1 разделяет область влажного пара (под кривой) и область перегретого пара (над кривой). Между двумя пограничными кривыми находится область влажного пара, для которой горизонтальные изотермы совпадают с изобарами. В области перегретого пара, лежащей за пределами кривой х = 1, изобары круто поднимаются вверх. На кривой х = 0 лежат точки, характеризующие состояние жидкости, а на кривой х = 1 - точки, характеризующие состояние сухого насыщенного пара. Идеальный холодильный цикл в sТ диаграмме. Процесс испарения хладагента при подводе теплоты q0 в sТ диаграмме (см. рис. 6.21, а) изображается горизонтальной прямой 4-1, совпадающей с изотермой Tисп, а процесс конденсации при отводе теплоты q изображается прямой 2-3, совпадающей с изотермой Tкон. Вертикальная прямая 7-2 соответствует процессу адиабатического сжатия влажного пара в компрессоре, а прямая 3-4 - адиабатическому расширению хладагента перед испарением. Количество теплоты q0, подведенной к 1 кг хладагента в испарителе соответствует уравнению: Количество теплоты q, отведенной от 1 кг хладагента в конденсаторе и определяется по уравнению: Удельная работа, совершенная в идеальном холодильном цикле равна: и изображается в sТ -диаграмме площадью 1-2-3-4. Эффективность холодильного цикла оценивается холодильным коэффициентом - отношением холодопроизводительности к затраченной работе: Анализ уравнения показывает, что холодильный коэффициент возрастает с увеличением температуры кипения Тисп и с понижением температуры конденсации Ткон, что необходимо учитывать при выборе хладагента. Идеальный холодильный цикл в ip -диаграмме. На оси ординат iр -диаграммы (см. рис. 6.21, б) откладывают давление p (Па), а на оси абсцисс - энтальпию i (Дж/кг). Процесс адиабатического сжатия влажного пара хладагента в компрессоре изображается в iр -диаграмме кривой 1-2. Горизонтальная прямая 2-3 соответствует изотермическому процессу конденсации пара. Кривая 3-4 изображает адиабатическое расширение. Горизонтальная прямая 4-1 - испарение при кипении хладагента. Удельные количества теплоты и работы на iр -диаграмме пропорциональны горизонтальным отрезкам - разностям соответствующих энтальпий. Удельная холодопроизводительность идеального цикла qо пропорциональна отрезку 4-1 или , а удельная теплота q, отводимая в конденсаторе, пропорциональна отрезку 2-3, или Удельная работа, совершаемая в компрессоре (без учета работы, получаемой при адиабатическом расширении хладагента), пропорциональна разности длин отрезков 2-3 и 4-1, или Холодильный коэффициент идеального цикла В расчетной практике оказалось удобнее пользоваться диаграммой, на оси ординат которой вместо давления р откладывают lg p. Эта математическая интерпретация не изменяет формы диаграммы, характера линий, изображающих цикл, не влияет на физический смысл отрезков в диаграмме. Изменяется при этом только масштаб диаграммы по оси ординат. Поэтому все рассуждения, сделанные в iр- диаграмме, справедливы и для lgp-i -диаграммы.
|