Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Проблемы размерности





Из ограничения D.90) вытекает еще один интересный результат. Если размер

скрытого слоя выбирается по следующей формуле (т.е. риск минимизируется по ):

 

то риск ограничивается величиной . Неожиданный аспект

этого результата состоит в том, что в терминах поведения риска скорость

сходимости, представленная как функция от размера обучающего множества , имеет порядок (умноженный на логарифмический член). В то же время обычная гладкая функция (например, тригонометрическая или полиномиальная) демонстрирует несколько другое поведение. Пусть — мера гладкости, определяемая как степень дифференцируемости функции (количество существующих производных). Тогда для обычной гладкой функции минимаксная скорость сходимости общего риска имеет порядок . Зависимость этой скорости от размерности входного пространства называют "проклятием размерности" (curse of dimensionality), поскольку это свойство ограничивает практическое использование таких функций. Таким образом, использование многослойного персептрона для решения задач аппроксимации обеспечивает определенные преимущества перед обычными гладкими функциями. Однако это преимущество появляется при условии, что первый абсолютный момент остается конечным. В этом состоит ограничение гладкости. Термин "проклятие размерности" (curse of dimensionality) был введен Ричардом Белманом (Richard Belman) в 1961 году в работе, посвященной процессам адаптивного управления. Если функция достаточно сложна и (по большей части) абсолютно неизвестна, необходимо уплотнить точки данных для более полного изучения поверхности. К сожалению, в многомерном пространстве из-за "проклятия размерности" очень сложно найти обучающую выборку с высокой плотностью дискретизации. В частности, в результате увеличения размерности наблюдается экспоненциальный рост сложности, что, в свою очередь, приводит к ухудшению пространственных свойств случайных точек с равномерным распределением. Функция, определенная в пространстве большой размерности, скорее всего, является значительно более сложной, чем функция, определенная в пространстве меньшей размерности, и эту сложность трудно разглядеть. Единственной возможностью избежать "проклятия размерности" является получение корректных априорных знаний о функции, определяемой данными обучения. Можно утверждать, что для практического получения хорошей оценки в пространствах высокой размерности необходимо обеспечить возрастание гладкости неизвестной функции наряду с увеличением размерности входных данных.

 







Дата добавления: 2015-10-01; просмотров: 548. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия