Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Проблемы размерности





Из ограничения D.90) вытекает еще один интересный результат. Если размер

скрытого слоя выбирается по следующей формуле (т.е. риск минимизируется по ):

 

то риск ограничивается величиной . Неожиданный аспект

этого результата состоит в том, что в терминах поведения риска скорость

сходимости, представленная как функция от размера обучающего множества , имеет порядок (умноженный на логарифмический член). В то же время обычная гладкая функция (например, тригонометрическая или полиномиальная) демонстрирует несколько другое поведение. Пусть — мера гладкости, определяемая как степень дифференцируемости функции (количество существующих производных). Тогда для обычной гладкой функции минимаксная скорость сходимости общего риска имеет порядок . Зависимость этой скорости от размерности входного пространства называют "проклятием размерности" (curse of dimensionality), поскольку это свойство ограничивает практическое использование таких функций. Таким образом, использование многослойного персептрона для решения задач аппроксимации обеспечивает определенные преимущества перед обычными гладкими функциями. Однако это преимущество появляется при условии, что первый абсолютный момент остается конечным. В этом состоит ограничение гладкости. Термин "проклятие размерности" (curse of dimensionality) был введен Ричардом Белманом (Richard Belman) в 1961 году в работе, посвященной процессам адаптивного управления. Если функция достаточно сложна и (по большей части) абсолютно неизвестна, необходимо уплотнить точки данных для более полного изучения поверхности. К сожалению, в многомерном пространстве из-за "проклятия размерности" очень сложно найти обучающую выборку с высокой плотностью дискретизации. В частности, в результате увеличения размерности наблюдается экспоненциальный рост сложности, что, в свою очередь, приводит к ухудшению пространственных свойств случайных точек с равномерным распределением. Функция, определенная в пространстве большой размерности, скорее всего, является значительно более сложной, чем функция, определенная в пространстве меньшей размерности, и эту сложность трудно разглядеть. Единственной возможностью избежать "проклятия размерности" является получение корректных априорных знаний о функции, определяемой данными обучения. Можно утверждать, что для практического получения хорошей оценки в пространствах высокой размерности необходимо обеспечить возрастание гладкости неизвестной функции наряду с увеличением размерности входных данных.

 







Дата добавления: 2015-10-01; просмотров: 548. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия