Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Собственные подпространства.





Любая линейная комбинация собственных векторов, соответствующих одному тому же собственному числу , является собственным вектором, относящимся к тому же собственному числу . Отсюда следует, то все собственные векторы, соответствующие одному и тому же числу , образуют линейное пространство, которое является подпространством в .

Докажем теорему о том, что собственные векторы, соответствующие различным собственным числам, образуют линейно независимую систему.

Пусть . Предположим (от противного), что - линейно зависимая система, это означает, что векторы коллинеарны: .

С одной стороны, , но то же время . Получается, что , то есть , что противоречит тому, что собственные числа различны. Итак, предположение коллинеарности собственных векторов, относящихся различным собственным числам, было неверно, значит эти векторы образуют линейно- независимую систему, что и требовалось доказать. Аналогично проводится доказательство для системы из n векторов. Если система собственных векторов, относящихся соответственно к , является линейно зависимой, то один из векторов системы является линейной комбинацией остальных. Положим для определённости . Тогда:

, но в то же время . Тогда разность:

, что означало бы для всех индексов i. Но по условию, собственные числа различны. Получили противоречие. Следовательно, система векторов линейно независима.

Ядро линейного оператора. Ядром линейного оператора называется совокупность всех векторов пространства, для которых . Легко доказывается, что все такие векторы образуют подпространство:

,то есть линейная комбинация векторов принадлежащих ядру оператора, тоже принадлежит ядру. Очевидно, ядро является собственным подпространством, соответствующим числу .

Докажем, что если существует хотя бы один ненулевой вектор, отображаемый линейным оператором в 0, то этот оператор не будет обратимым.

Пусть , то есть вектор принадлежит ядру оператора. Тогда для матрицы этого оператора верно , то есть однородная система

имеет нетривиальное решение. Отсюда следует, что матрица А (а это одновременно и основная матрица данной системы уравнений, и матрица линейного оператора) является вырожденной, то есть не существует обратной матрицы, следовательно, для оператора не существует обратный оператор .

 







Дата добавления: 2015-10-01; просмотров: 499. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия