Уравнения прямой и плоскости
Уравнение прямой на плоскости в декартовой системе координат можно задать уравнением вида для случая, когда прямая не параллельна оси OY, и уравнением для вертикальной прямой. Но прямая может быть также задана и другим способом. Достаточно указать вектор направления этой прямой и какую-нибудь точку , лежащую на этой прямой. При этом точки, лежащие на прямой, могут быть заданы с использованием векторных операций в виде так называемого параметрического уравнения прямой в котором параметр t пробегает все значения числовой прямой. Координаты точки, соответствующей некоторому значению этого параметра, определяются соотношениями
Прямую в пространстве тоже можно задавать параметрическим уравнением, которое очень легко получить из предыдущего простым переходом от двумерных векторов к трехмерным. Пусть . Тогда это уравнение будет определять прямую в пространстве, а координаты точек этой прямой будут определяться формулами
Как известно из элементарной геометрии, через любые три точки в пространстве проходит плоскость. С другой стороны, через каждую точку плоскости можно провести единственную прямую, перпендикулярную данной плоскости. При этом все эти прямые будут параллельны друг другу, а значит, они имеют общий вектор направления. Этот вектор будем называть нормалью к плоскости. Если длина вектора равна единице, мы будем называть его единичной нормалью. В компьютерной графике часто приходится решать задачу построения нормали к некоторой плоскости, заданной тремя точками, а также задачи пересечения прямой с плоскостью и двух плоскостей. Плоскость в пространстве можно задать, указав вектор нормали к ней и какую-либо точку, принадлежащую данной плоскости. Пусть - вектор единичной нормали, а - некоторая точка на плоскости. Тогда для любой точки , лежащей на плоскости, вектор будет ортогонален вектору нормали, а следовательно, выполняется равенство Раскрывая это выражение в координатном виде, получаем Теперь перепишем это уравнение в виде
где . Это уравнение называется каноническим уравнением плоскости. При этом совершенно ясно, что если все это уравнение умножить на какой-либо отличный от нуля множитель, то оно будет описывать ту же самую плоскость, т.е. коэффициенты для каждой плоскости задаются с точностью до произвольного ненулевого множителя. Но если при этом вектор имеет единичную длину, то задает расстояние от начала координат до данной плоскости. В алгоритмах компьютерной графики довольно часто приходится сталкиваться с задачей построения плоскости, проходящей через три заданные точки. Пусть три точки , и , не лежащие на одной прямой, имеют координатами и . Для канонического уравнения необходимо построить нормаль к плоскости, что легко можно осуществить, используя операцию векторного произведения. Поскольку векторы и лежат в искомой плоскости, то вектор будет ортогонален этой плоскости. Пусть , тогда уравнение плоскости будет иметь вид Остается определить значение . Так как точка принадлежит этой плоскости, то ее координаты должны удовлетворять полученному уравнению. Подставим их в уравнение и получим следовательно и после подстановки окончательно получим:
В большинстве алгоритмов, использующих плоскости, достаточно знать нормаль к ней и какую-либо точку, принадлежащую плоскости. Очевидно, что по аналогии можно вывести каноническое уравнение прямой на плоскости, если задана нормаль к ней и принадлежащая прямой точка.
|