Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пересечение луча с плоскостью и сферой





Прямая на плоскости и в пространстве является бесконечной в обе стороны. Лучом называется полупрямая, т.е. множество всех точек прямой, лежащих по одну сторону от заданной ее точки, называемой началом луча. Луч будем задавать в параметрическом виде, как это было описано в одном из предыдущих разделов. Пусть - направляющий вектор прямой, а - начальная точка. Тогда координаты точек луча будут определяться формулами

(3.8)

Будем считать, что направляющий вектор единичный, т.е. .

Сначала рассмотрим задачу о нахождении точки пересечения луча с плоскостью, заданной каноническими уравнением

(3.9)

Вектор нормали тоже будем считать единичным. Сначала надо определить значение параметра t, при котором луч пересекает плоскость. Для этого подставим координаты из формулы (3.8) в уравнение (3.9) и получим

откуда легко определить, что луч пересекает плоскость в точке со значением

Очевидно, что такая точка существует только при условии . В свою очередь, эта величина обращается в нуль только в случае, когда векторы и ортогональны друг другу.

Пусть теперь нам задана сфера с центром в точке и радиусом . Тогда уравнение сферы будет иметь вид

Подставив сюда координаты луча из уравнения (3.9), получим, что параметр, при котором луч пересекает сферу, должен удовлетворять квадратному уравнению

где . Определим корни этого уравнения. Если дискриминант , то корни существуют. Их может быть либо два , либо один . В первом случае имеем две точки пересечения, во втором - одну (луч касается сферы). Соответствующие значения параметра определяются соотношением


Лекция №3 (продолжение)







Дата добавления: 2015-10-01; просмотров: 541. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия