Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пересечение луча с плоскостью и сферой





Прямая на плоскости и в пространстве является бесконечной в обе стороны. Лучом называется полупрямая, т.е. множество всех точек прямой, лежащих по одну сторону от заданной ее точки, называемой началом луча. Луч будем задавать в параметрическом виде, как это было описано в одном из предыдущих разделов. Пусть - направляющий вектор прямой, а - начальная точка. Тогда координаты точек луча будут определяться формулами

(3.8)

Будем считать, что направляющий вектор единичный, т.е. .

Сначала рассмотрим задачу о нахождении точки пересечения луча с плоскостью, заданной каноническими уравнением

(3.9)

Вектор нормали тоже будем считать единичным. Сначала надо определить значение параметра t, при котором луч пересекает плоскость. Для этого подставим координаты из формулы (3.8) в уравнение (3.9) и получим

откуда легко определить, что луч пересекает плоскость в точке со значением

Очевидно, что такая точка существует только при условии . В свою очередь, эта величина обращается в нуль только в случае, когда векторы и ортогональны друг другу.

Пусть теперь нам задана сфера с центром в точке и радиусом . Тогда уравнение сферы будет иметь вид

Подставив сюда координаты луча из уравнения (3.9), получим, что параметр, при котором луч пересекает сферу, должен удовлетворять квадратному уравнению

где . Определим корни этого уравнения. Если дискриминант , то корни существуют. Их может быть либо два , либо один . В первом случае имеем две точки пересечения, во втором - одну (луч касается сферы). Соответствующие значения параметра определяются соотношением


Лекция №3 (продолжение)







Дата добавления: 2015-10-01; просмотров: 541. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия