Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Аналитическое представление кривых и поверхностей





Пусть на плоскости задана декартова система координат.

Кривая на плоскости - это геометрическое место точек , удовлетворяющих уравнению

(3.10)

где - функция двух переменных. Ясно, что далеко не каждая функция будет задавать линию. Так, например, уравнению

не удовлетворяет ни одна точка плоскости, а уравнению

удовлетворяет только одна точка .

Для аналитического представления кривой во многих случаях удобнее задавать кривую параметрическими уравнениями, используя вспомогательную переменную (параметр)

(3.11)

где и - непрерывные функции на заданном интервале изменения параметра. Если функция такова, что можно выразить через , то от параметрического представления кривой легко перейти к уравнению (3.10):

Систему уравнений (3.11) можно записать в векторном виде:

Отрезок прямой представляет собой частный случай кривой, причем параметрическое представление его может иметь вид

или

Окружность радиуса с центром в точке может быть представлена параметрическими уравнениями

Перейдем к трехмерному пространству с заданной декартовой системой координат.

Поверхность в пространстве - это геометрическое место точек , удовлетворяющих уравнению вида

(3.12)

Так же как и в случае кривой на плоскости, не всякая функция описывает какую-либо поверхность. Например, уравнению

не удовлетворяет ни одна точка пространства. Поверхность также может быть задана в параметрическом виде, но в отличие от кривой для этого требуются две вспомогательные переменные (параметры):

(3.13)

Например, сфера радиуса с центром в точке может быть задана уравнением

либо же параметрическими уравнениями

Кривую в пространстве можно описать как пересечение двух поверхностей, т.е. с помощью системы уравнений

(3.14)

или параметрическими уравнениями вида

(3.15)






Дата добавления: 2015-10-01; просмотров: 415. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия