Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Цветовой график МКО





Трехмерная природа восприятия цвета позволяет отображать его в прямоугольной системе координат. Любой цвет можно изобразить в виде вектора, компонентами которого являются относительные веса красного, зеленого и синего цветов, вычисленные по формулам

Поскольку эти координаты в сумме всегда составляют единицу, а каждая из координат лежит в диапазоне от 0 до 1, то все представленные таким образом точки пространства будут лежать в одной плоскости, причем только в треугольнике, отсекаемом от нее положительным октантом системы координат (рис. 2.5а). Ясно, что при таком представлении все множество точек этого треугольника можно описать с помощью двух координат, так как третья выражается через них посредством соотношения

Таким образом, мы переходим к двумерному представлению области, т.е. к проекции области на плоскость (рис. 2.5б).

Рис. 2.5. Трехмерное цветовое пространство

С использованием такого преобразования в 1931 г. были выработаны международные стандарты определения и измерения цветов. Основой стандарта стал так называемый двумерный цветовой график МКО. Поскольку, как показали физические эксперименты, сложением трех основных цветов можно получить не все возможные цветовые оттенки, то в качестве базисных были выбраны другие параметры, полученные на основе исследования стандартных реакций глаза на свет. Эти параметры - - являются чисто теоретическими, поскольку построены с использованием отрицательных значений основных составляющих цвета. Треугольник основных цветов был построен так, чтобы охватывать весь спектр видимого света. Кроме того, равное количество всех трех гипотетических цветов в сумме дает белый цвет. Координаты цветности строятся так же, как и в приведенной выше формуле:

При проекции этого треугольника на плоскость получается цветовой график МКО. Но координаты цветности определяют только относительные количества основных цветов, не задавая яркости результирующего цвета. Яркость можно задать координатой , а определить исходя из величин , по формулам

Рис. 2.6. Цветовой график МКО. На контуре указаны длины волн в нанометрах

Цветовой график МКО приведен на рис. 2.6. Область, ограниченная кривой, охватывает весь видимый спектр, а сама кривая называется линией спектральных цветностей. Числа, проставленные на рисунке, означают длину волны в соответствующей точке. Точка , соответствующая полуденному освещению при сплошной облачности, принята в качестве опорного белого цвета.

Цветовой график удобен для целого ряда задач. Например, с его помощью можно получить дополнительный цвет: для этого надо провести луч от данного цвета через опорную точку до пересечения с другой стороной кривой (цвета являются дополнительными друг к другу, если при сложении их в соответствующей пропорции получается белый цвет). Для определения доминирующей длины волны какого-либо цвета также проводится луч из опорной точки до пересечения с данным цветом и продолжается до пересечения с ближайшей точкой линии цветностей.

Для смешения двух цветов используются законы Грассмана. Пусть два цвета заданы на графике МКО координатами и . Тогда смешение их дает цвет . Если ввести обозначения , то получим координаты цветности смеси

Координаты МКО являются точным стандартом определения цвета. Но в различных областях, имеющих дело с цветом, есть свой подход к его моделированию. В частности, может использоваться другой набор основных цветов. Компьютерная графика опирается на систему , поэтому представляет интерес переход между этими двумя наборами цветов (иными словами, преобразование координат цветности).







Дата добавления: 2015-10-01; просмотров: 545. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия