Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Аппроксимация функций. Линейная и квадратичная интерполяции.





Пусть y явл. ф-й от х. Известны лишь некоторые значения , т.е дискретному множеству поставлено в соотв. дискретное множество – функция задана таблично. Ставится задача отыскания значения ф-и y в других точках, отличных от узлов . Этой цели и служит задача о приближении или аппроксимации ф-ции, заданной дискретно.

Линейная интерполяция: она состоит в том, что заданные точки соединяются прямолинейными отрезками и функция S(x) приближается к ломанной, с вершинами в данных точках. Для i-го интервала можно написать ур-е прямой, проходящей через точки и

Таким образом, при использовании линейной интерполяции сначала нужно определить интервал, в который попадает значение аргумента х, а затем построить ур-е прямой по двум точкам, концами этого интервала, и найти значение y(x).

Квадратичная интерполяция: в качестве интерполяционной функции на отрезке принимается квадратный трехчлен. Ур-е кв. трехчлена при , которое содержит 3 неизв. коэффициента - . Для их определения необходимо 3 уравнения. Ими служат условия прохождения параболы через 3 точки - , которые можно записать в виде:

Решая эту систему лин. ур-й относительно , мы найдём коэффициенты квадратного трехчлена.

 

Многочлен Лагранжа

Ln(x)= , где pui(x)= ,i=0,1,…,n

Многочлен Ньютона

N(xi+th)=yi+t∆yi+ ; i=0,1,…,n

 

 








Дата добавления: 2015-10-01; просмотров: 1932. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия