Аппроксимация функций. Линейная и квадратичная интерполяции.
Пусть y явл. ф-й от х. Известны лишь некоторые значения , т.е дискретному множеству поставлено в соотв. дискретное множество – функция задана таблично. Ставится задача отыскания значения ф-и y в других точках, отличных от узлов . Этой цели и служит задача о приближении или аппроксимации ф-ции, заданной дискретно. Линейная интерполяция: она состоит в том, что заданные точки соединяются прямолинейными отрезками и функция S(x) приближается к ломанной, с вершинами в данных точках. Для i-го интервала можно написать ур-е прямой, проходящей через точки и Таким образом, при использовании линейной интерполяции сначала нужно определить интервал, в который попадает значение аргумента х, а затем построить ур-е прямой по двум точкам, концами этого интервала, и найти значение y(x). Квадратичная интерполяция: в качестве интерполяционной функции на отрезке принимается квадратный трехчлен. Ур-е кв. трехчлена при , которое содержит 3 неизв. коэффициента - . Для их определения необходимо 3 уравнения. Ими служат условия прохождения параболы через 3 точки - , которые можно записать в виде: Решая эту систему лин. ур-й относительно , мы найдём коэффициенты квадратного трехчлена.
Многочлен Лагранжа Ln(x)= , где pui(x)= ,i=0,1,…,n Многочлен Ньютона N(xi+th)=yi+t∆yi+ ; i=0,1,…,n
|