Классификация гигантского магнетосопротивления
Классификацию производят по типам устройств, в которых проявляется эффект гигантского магнетосопротивления. · Гигантское магнетосопротивление в плёнках. Взаимодействие магнитных слоёв в подобных структурах происходит с помощью так называемого антиферромагнитного спаривания. Его следствием является осциллирующая зависимость коэффициента Гигантского магнетосопротивления от толщины немагнитной прослойки. В первых сенсорах магнитного поля, использующих антиферромагнитные сверхрешетки, поле насыщения было очень большим (до десятков тысяч эрстед) вследствие сильного антиферромагнитного взаимодействия между применявшимися в них плёнками хрома и железа (кобальта), а также сильными полями анизотропии в них. Поэтому чувствительность подобных приборов была очень низкой. Позднее в них начали применять пермаллой (в магнитных слоях) и серебро (в немагнитных слоях), что снизило поле насыщения до десятков эрстед. Наиболее удачной оказалась конфигурация тех спиновых клапанов, в которых эффект Гигантского магнетосопротивления возникает вследствие обменного смещения. Они состоят из сенсорного слоя, прослойки, «фиксированного» слоя и антиферромагнитно направленного фиксирующего слоя. Последний из них служит для фиксации направления намагниченности в «фиксированном» слое. Все слои, кроме фиксирующего, достаточно тонки для обеспечения низкого сопротивления структуры. Реакция на внешнее магнитное поле заключается в изменении направления намагниченности сенсорного слоя относительно «фиксированного». Основным отличием таких спиновых клапанов от других многослойных устройств является монотонная зависимость амплитуды эффекта от толщины dN прослойки между магнитными слоями, что можно представить в виде феноменологической зависимости, где δH — некоторый нормировочный коэффициент ГСМ, λN — длина свободного пробега электронов в немагнитном материале, d0 — эффективная толщина, учитывающая шунтирование остальных элементов структуры. Смысл параметров формулы тот же, что и в предыдущей зависимости, но теперь для используемого ферромагнетиках. Эффект ГМС также может наблюдаться и в отсутствие антиферромагнитного спаривания слоями. В таком случае магнетосопротивление возникает из-за различия в коэрцитивных силах. В многослойных структурах типа пермаллой/медь/кобальт/медь внешнее магнитное поле приводит к переключению между различными направлениями намагниченности насыщения в слоях (параллельная при больших полях и антипараллельная в малых). Подобные системы характеризуются меньшим полем насыщения и большим δH, чем сверхрешетки с антиферромагнитной связью. Также подобный эффект наблюдается в структурах кобальта и меди. Фактически, существование таких структур означает, что для наблюдения гигантского магнитосопративления необходимым условием является не наличие связи между слоями, а некоторое распределение магнитного момента в структуре, которым можно управлять внешним полем. В случае инверсного эффекта минимум сопротивления наблюдается при антипараллельной ориентации намагниченности в слоях сверхрешётки. Инверсный эффект ГМС наблюдается, если магнитные слои состоят из различных материалов, например NiCr/Cu/Co/Cu. Если записать удельное сопротивление слоя для электронов с противоположными направлениями спинов в виде Известно, что аналогичные никель-хромовому слою свойства будет проявлять никель, легированный ванадием, в то время как легирование железом, кобальтом, марганцем, золотом или медью не приведет к наблюдению инверсного эффекта в рассмотренной выше структуре. · Гигантское магнетосопротивление в зернистых структурах. Гигантское магнетосопротивление в зернистых сплавах (до десятков нанометров) ферромагнитных и немагнитных металлов было обнаружено в 1992 году и впоследствии объяснено спин-зависимым рассеянием носителей тока на поверхности и в объёме гранул. Гранулы образуют ферромагнитные кластеры обычно диаметром порядка 10 нм, окружённые немагнитным металлом, что может быть описано как эффективная плёночная сверхрешётка. Необходимым условием для материалов таких сплавов является плохая взаимная растворимость компонент (например, кобальт и медь). На свойства таких структур сильно влияет время и температура отжига: можно получить отрицательное Гигантское магнетосопротивление, которое увеличивается при увеличении температуры.
|