Внутриклеточная коммуникация с участием вторых посредников
Регуляторные функции, описанные выше, включают воздействия на клеточную мембрану. Информация, полученная мембраной клетки, часто должна вызывать реакцию органелл и переносится к ним различными веществами, известными как вторые посредники (в отличие от первых, поступающих к клетке от внешних источников). Изучение вторых посредников развивается быстро, и нет гарантии, что нынешний уровень понимания проблемы окажется достаточно полным. Здесь мы коснемся трех хорошо изученных посредников: Са2+, цАМФ и инозитолтрифосфата. Кальций. Простейший внутриклеточный посредник - это ион Са2 +. Его свободная концентрация в покоящейся клетке очень низка и составляет 10−810 −7 моль-л−1. Он может проникать в клетку через специфические мембранные каналы, когда они находятся в открытом состоянии, например при изменениях мембранного потенпиала (см. гл. 2). Возникающее в результате повышение концентрации Ca2 + запускает важные реакции в клетке, такие, как сокращение миофибрилл, которое является основой мышечного сокращения (см. гл. 4), или выделение везикул, содержащих медиаторы, из нервных окончаний (см. гл. 3). Обе реакции требуют концентрации Са2+, равной приблизительно 10 −5 моль-л−1. Са2 +, оказывающий регуляторное действие, может высвобождаться также и из внутриклеточных депо, таких, как эндоплазматический ретикулум. Высвобождение Са2+ из депо требует участия других посредников (см., например, рис. 1.16). Циклический аденозинмонофосфат, цАМФ. В последнее время доказано, что циклический аденозинмонофосфат (цАМФ), производное основного источника энергии в организме - АТФ, является важным вторым посредником. Сложная цепь реакций, показанная на рис. 1.15, начинается с рецептора Rs на наружной поверхности плазматической мембраны, который может служить местом специфического связывания для различных медиаторов и гормонов. После связывания со специфической «стимулирующей» молекулой Rs изменяет свою конформацию; эти изменения влияют на белок Gs на внутренней поверхности мембраны таким образом, что становится возможной активация последнего внутриклеточным гуанозинтрифосфатом (ГТФ). Активированный белок Gs, в свою очередь, стимулирует фермент на внутренней поверхности мембраны - аденилатциклазу (АЦ), которая катализирует образование цАМФ из АТФ. Водорастворимый цАМФ и является посредником, передающим эффект сти- 24 ЧАСТЬ I. ОБЩАЯ ФИЗИОЛОГИЯ КЛЕТКИ
муляции внеклеточного рецептора Rs к внутренним структурам клетки. Параллельно со стимуляторной цепью реакций с участием Rs возможно связывание тормозных медиаторов и гормонов с соответствующим рецептором Ri, который опять-таки через ГТФ-активируемый белок Gi ингибирует АЦ и, таким образом, продукцию цАМФ. Диффундируя в клетку, цАМФ реагирует с аденилаткиназой (А-киназа); при этом высвобождается субъединица С, которая катализирует фосфорилирование белка Р. Это фосфорилирование переводит белки в активную форму, и теперь они могут проявить свое специфическое регулирующее действие (например, вызвать деградацию гликогена). Эта сложная регуляторная система чрезвычайно эффективна, так как конечным результатом является фосфорилирование множества белков, т. е. регуляторный сигнал проходит цепь с большим коэффициентом усиления. Наружные медиаторы, которые связываются с рецепторами Rs и Ri, специфическими для каждого из них, чрезвычайно разно- образны. Адреналин, связываясь с Rs или Ri, участвует в регуляции метаболизма липидов и гликогена, а также в усилении сокращения сердечной мышцы и в других реакциях (см. гл. 19). Тиреотропный гормон, активируя Rs, стимулирует выделение щитовидной железой гормона тироксина, а простагландин I тормозит агрегацию кровяных пластинок. Ингибиторные эффекты, в том числе адреналина, опосредованные через Ri, выражаются в замедлении липолиза. Таким образом, система цАМФ-это многофункциональная внутриклеточная регуляторная система,которая может точно контролироваться внеклеточными стимуляторными и ингибиторными сигнальными веществами. Инозитолфосфат «ИФ3». Внутриклеточная система второго посредника - инозитолфосфата - была открыта лишь недавно (рис. 1.16). В данном случае ингибиторный путь отсутствует, однако имеется сходство с системой цАМФ, в которой эффект стимуляции рецептора R переносится на ГТФ-активируемый G-белок на внутренней поверхности мембраны. На следующем этапе обычный мембранный липид фосфатидилинозитол (ФИ), предварительно получив две дополнительные фосфатные группы, превращается в ФИ-дифосфат (ФИФ2), который расщепляется активированной фосфодиэстеразой (ФДЭ) на инозитолтрифосфат (ИФ3) и липид диацилглицерол (ДАГ). Инозитолтрифосфат - это водорастворимый второй посредник, диффундирующий в цитозоль. Он действует в первую очередь путем высвобождения Ca2 + из эндоплазматического ретикулума. Са2+ в свою очередь действует в качестве посредника, как было описано выше; например, он активирует Ca2+-зависимую фосфокиназу, фосфорилирующую ферменты. Липидная субъединица ДАГ (рис. 1.16) также переносит сигнал, диффундируя в липидной фазе плазматической мембраны к расположенной на ее внутренней поверхности С-киназе, которая и активируется с участием фосфатидилсерина в качестве кофактора. Затем С-киназа запускает фосфорилирование белков, переводя их в активную форму. Внутриклеточная система второго посредника ИФ3 также может управляться множеством внешних медиаторов и гормонов, в том числе ацетилхолином, серотонином, вазопрессином и тиреотропным гормоном; как и система цАМФ, она характеризуется разнообразными внутриклеточными эффектами. Возможно, эта система активируется и светом в зрительном рецепторе глаза, и играет центральную роль в фототрансдукции (см. гл. 11). Впервые в индивидуальном развитии организма рецептор системы ИФ3 активируется спермием, вследствие чего ИФ3 принимает участие в регуляторных реакциях, сопровождающих оплодотворение яйцеклетки. Системы цАМФ и ИФ3-ДАГ являются высокоэффективными биологическими усилителями. Они ГЛАВА 1. ОСНОВЫ КЛЕТОЧНОЙ ФИЗИОЛОГИИ 25
преобразуют реакцию между медиатором и наружным мембранным рецептором в фосфорилирование множества внутриклеточных белков, которые затем могут влиять на различные функции клетки. Один из существенных аспектов проблемы состоит в том, что, насколько известно на сегодняшний день, су- ществуют только эти две тесно связанные регуляторные системы такого типа, используемые многочисленными внешними посредниками для регуляции разнообразных внутриклеточных процессов. Вместе с тем, эти регуляторные системы, в том числе и Са2+, тесно взаимодействуют друг с другом, что позволяет им осуществлять тонкую регуляцию клеточных функций. Литература
|