Очистка отходящих газов стационарных источников от пыли
В процессах пылеулавливания весьма важны физико-химические характеристики пылей и туманов, а именно: дисперсный (фракционный) состав, плотность, адгезионные свойства, смачиваемость, электрическая заряженность частиц, удельное сопротивление слоев частиц и т. д. Пылеулавливающее оборудование можно разделить на: оборудование для улавливания пыли сухим способом, к которому относятся циклоны, пылеосадительные камеры, вихревые циклоны, жалюзийные и ротационные пылеуловители, электрофильтры, фильтры; оборудование для улавливания пыли мокрым способом, к которому относятся скрубберы Вентури, форсуночные скрубберы, пенные аппараты и др. Широкое распространение для сухой очистки газов от пыли получили циклоны различных типов (Рис.19). Газовый поток вводится в циклон через патрубок 2 по касательной к внутренней поверхности корпуса 1 и совершает вращательно-поступательное движение вдоль корпуса к бункеру 4. Под действием центробежной силы частицы пыли образуют на стенке циклона пылевой слой, который вместе с частью газа попадает в бункер. Отделение частиц пыли от газа, попавшего в бункер, происходит при повороте газового потока в бункере на 180о. Освободившись от пыли, газовый поток образует вихрь и выходит из бункера, давая начало вихрю газа, покидающему циклон через выходную трубу 3. Ротационные пылеуловители относят к аппаратам центробежного действия, которые одновременно с перемещением воздуха очищают его от пыли. При работе вентиляторного колеса 1 ротационного пылеуловителя (рис. 20) частицы пыли за счет центробежных сил отбрасываются к стенке спиралеобразного кожуха 2 и движутся по ней в направлении выхлопного отверстия 3. Газ, обогащенный пылью, через специальное пылеприемное отверстие 3 отводится в пылевой бункер, а очищенный газ поступает в выходную трубу 4.
Более перспективными пылеотделителями ротационного типа являются противопоточные ротационные пылеотделители (рис. 21). Пылеотделитель состоит из встроенного в кожух 1 полого ротора 2 с перфорированной поверхностью и колеса вентилятора 3. Ротор и колесо вентилятора насажены на общий вал 4. При работе пылеотделителя запыленный воздух поступает через патрубок 6 внутрь кожуха, где закручивается вокруг ротора. В результате вращения пылевого потока возникают центробежные силы, под действием которых пылевые частицы стремятся выделиться из воздуха в радиальном направлении. Одновременно на эти частицы действует аэродинамическая сила, создаваемая воздухом, движущимся через вентилятор к выходному отверстию 5. Эффективность очистки зависит от выбранного соотношения центробежной и аэродинамической сил и теоретически может достигать единицы. Вихревые пылеуловители (ВПУ) также относят к аппаратам центробежного действия (рис. 22). Отличительная особенность ВПУ - высокая эффективность очистки газа от тончайших фракций, что позволяет им в отдельных случаях конкурировать с фильтрами. Существуют две разновидности ВПУ: сопловой и лопаточный типы. Процесс обеспыливания происходит следующим образом: запыленный газ поступает в камеру 5 через изогнутый патрубок 4. Для предварительного закручивания запыленного газа в камеру 5 встроен сопловой или лопаточный завихритель 2. В ходе своего движения вверх к выходному патрубку 6 газовый поток подвергается действию вытекающих из завихрителя 1 (наклонные сопла в ВПУ соплового типа или наклонные лопатки в ВПУ лопаточного типа) струй вторичного воздуха, которые придают потоку вращательное движение. Под действием центробежных сил, возникающих при закручивании потока, частицы пыли устремляются к его периферии, откуда спиральными струями вторичного воздуха перемещаются к низу аппарата в кольцевое межтрубное пространство. В качестве вторичного потока может быть использован воздух окружающей среды, очищенный газ или запыленный газ. Для тонкой очистки газовых выбросов от примесей широко используют фильтры. Процесс фильтрования состоит в задержании частиц примесей на пористых перегородках. Осаждение частиц на поверхность пор фильтроэлемента происходит в результате совокупного действия эффекта касания, а также диффузионного, инерционного и гравитационного процессов. Электрическая очистка - один из наиболее совершенных видов очистки газов от взвешенных в них частиц пыли и тумана. Загрязненные газы, поступающие в электрофильтр всегда оказываются частично ионизированными за счет различных внешних воздействий, поэтому они способны проводить ток, попадая в пространство между двумя электродами. Сила тока зависит от числа ионов и напряжения между электродами. При увеличении напряжения в движение между электродами вовлекается всё большее число ионов и сила тока растет до тех пор, пока в движении не окажутся все ионы, имеющиеся в газе. При этом величина силы тока становится постоянной (ток насыщения), несмотря на дальнейший рост напряжения. При некотором достаточно большом напряжении движущиеся ионы и электроны настолько ускоряются, что, сталкиваясь с молекулами газа, ионизируют их, превращая нейтральные молекулы в положительные ионы и электроны. Образовавшиеся новые ионы и электроны ускоряются электрическим полем и, в свою очередь, ионизируют новые молекулы газа. Этот процесс, названный ударной ионизацией газа, протекает устойчиво лишь в неоднородном электрическом поле, характерном для цилиндрического конденсатора (рис. 23). В зазоре между коронирующим 1 и осадительным 2 электродами создается электрическое поле убывающей напряженности с силовыми линиями 3. Аэрозольные частицы, поступающие в зону между электродами, адсорбируют на своей поверхности ионы, приобретая электрический заряд, и получают тем самым ускорение, направленное в сторону электрода с противоположным знаком. Аппараты мокрой очистки газов имеют широкое распространение, т.к. характеризуются высокой эффективностью очистки от мелкодисперсных пылей, а также возможностью очистки пыли горячих и взрывоопасных газов. Аппараты мокрой очистки работают по принципу осаждения частиц пыли на поверхность либо капель жидкости, либо пленки жидкости. Осаждение частиц пыли на жидкость происходит под действием сил инерции и броуновского движения. Конструктивно мокрые пылеуловители разделяют на скрубберы Вентури, форсуночные и центробежные скрубберы, аппараты ударно инерционного типа, барботажно-пенные аппараты и др. Среди аппаратов мокрой очистки с осаждением частиц пыли на поверхность капель на практике более применимы скрубберы Вентури (рис. 23). Основная часть скруббера - сопло Вентури 2, в конфузорную часть которого подводится запыленный поток газа и через центробежные форсунки 1 жидкость на орошение. В конфузорной части сопла происходит разгон газа от входной скорости 15-20 м/с до скорости в узком сечении сопла 30-200 м/с и более. Процесс осаждения частиц пыли на поверхность капель обусловлен массой жидкости, развитой поверхностью капель и высокой относительной скоростью частиц пыли и капель в конфузорной части сопла. Разновидностью аппаратов для улавливания пыли осаждением частиц на каплях жидкости являются форсуночные скрубберы (рис. 24). Запыленный газовый поток поступает в скруббер по патрубку 3 и направляется на зеркало воды, где осаждаются наиболее крупные частицы пыли. Газовый поток, распределяясь по всему сечению корпуса 1, поднимается вверх навстречу потоку капель жидкости, подаваемых в скруббер через форсуночные пояса 2. К мокрым пылеуловителям относят барботажно-пенные пылеуловители (рис. 25). В таких аппаратах газ на очистку поступает через патрубок 6 под решетку 5, на которую сверху подается жидкость по трубопроводу 2. Затем газ проходит через отверстия в решетке и, барботируя через слой жидкости 4 и пены 3, очищается от части пыли за счет осаждения частиц на внутренней поверхности газовых пузырей. При скорости подачи газа под решетку до 1 м/с наблюдается барботажный режим работы аппарата. Дальнейший рост скорости газа приводит к возникновению пенного слоя и повышению эффективности очистки.
|