Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Физические основы.





Известно, что свет можно рассматривать и как поток частиц (фотонов), распространяющихся по прямолинейным траекториям, и как электромагнитную волну, распространяющуюся в пространстве. При этом интенсивность света определяется амплитудой волны, а его цвет - частотой или длиной волны l. Сам процесс распространения света описывается уравнениями Максвелла.

Произвольный луч света можно рассматривать как сумму волн с различными длинами, распространяющихся в одном направлении. Вклад волны с длиной l определяется функцией I(l), называемой спектральной кривой (спектральной характеристикой, спектральной функцией) данного луча света.

В действительности один и тот же воспринимаемый глазом цвет может вызываться бесконечным количеством различных источников света с различными спектральными кривыми I(l). Поэтому при исследовании обычно ограничиваются конечным набором значений l, например для чистых красного (Red), зелёного (Green) и синего (Blue) цветов, и представляют все цвета в виде линейной комбинации этих базовых цветов. Именно таким образом организовано представление цветов и в телевизоре, и в дисплее.

При таком подходе вместо спектральной функции мы получаем трёхмерный вектор (I(lRed), I(lGreen), I(lBlue)).

Далее будем рассматривать распространение монохромной волны с длиной l.

Процесс распространения света распадается на две части - распространение света в однородной среде и взаимодействие света с границей раздела двух сред. Когда волна (луч света) попадает на границу раздела двух сред, происходят его отражение и преломление.

Распространение света в однородной среде.

Распространение света в однородной среде происходит вдоль прямолинейной траектории с постоянной скоростью. Отношение скорости распространения света в вакууме к этой скорости называется коэффициентом преломления (индексом рефракции) среды:

(2.1)

Обычно этот коэффициент зависит от длины волны l.

При распространении света в поглощающей среде имеет место экспоненциальное затухание по закону Бугера - Ламберта:

(2.2)

где I0 - освещённость при нулевой толщине среды,

b - коэффициент затухания (коэффициент поглощения среды),

l - расстояние, пройденной лучом в среде.

2. Определение вектора отражения.

Рассмотрим случай зеркального (идеального) отражения.

Луч падает в точку Q в направлении v и отражается в направлении, задаваемом вектором r, определяемым следующим законом: вектор r лежит в той же плоскости, что и вектор v и вектор нормали к поверхности в точке падения n, а угол падения q v равен углу отражения qr

Зеркальное отражение и идеальное преломление

Будем считать все векторы единичными.

Тогда из первого условия следует, что вектор r равен линейной комбинации векторов v и n, то есть

r = a v + b n.

Так как q v = qr, то

(- v, n) = cos q v = cos qr = (r, n).

Отсюда легко получается

r = v - 2(v, n) n. (2.3)

Несложно убедиться, что вектор, задаваемый соотношением (2.13), является единичным:

r 2 = (v - 2(v, n) n)2 = v 2 - 2×2(v, n)(v, n) + 4(v, n)2 n 2 = 1

Определение вектора преломления.

Рассмотрим случай идеального преломления.

Луч, падающий в точку P в направлении вектора v, преломляется внутрь второй среды в направлении вектора p). Преломление подчиняется закону Синелиуса, согласно которому векторы v, n и p лежат в одной плоскости и для углов справедливо соотношение.

h v sin q v = hp sin qp. (2.4)

Найдём для вектора p явное выражение. Этот вектор можно представить в следующем виде:

p = a v + b n.

Соотношение (2.13) можно переписать так:

sin q p = h sin q v, (2.5)

где (2.6)

Тогда

h2 sin2q v = sin2q p

или

h2(1 - cos2q v) = 1 - cos2q p. (2.7)

 

Так как

cos q v = (- v, n),

cos q p = (- p, n),

то

a2(v, n)2 + 2ab(v, n) + b2 = 1 + h2((v, n)2 - 1). (2.8)

Из условия нормировки вектора p имеем

|| p ||2 = (p, p) = a2 + 2ab(v, n) + b2 = 1. (2.9)

Вычитая это соотношение из равенства (2.8), имеем:

a2((v, n)2 - 1) = h2((v, n)2 - 1), (2.10)

откуда a = ±h.

Из физических соображений следует, что a = h.

b2 + 2bh(v, n) + h2 - 1 = 0, (2.11)

Второй параметр (b) определяется из уравнения

D = 4{1 + h2((v, n)2 - 1)}. (2.12)

дискриминант которого равен

Решение этого уравнения задаётся формулой

(2.13)

и, значит, вектор

(2.14)

где C = cos q v = -(v, n). (2.15)

При этом случай, когда выражение под корнем отрицательно ({1+h22 - 1)} < 0) соответствует так называемому полному внутреннему отражению, когда вся световая энергия отражается от границы раздела сред и преломления фактически не происходит.







Дата добавления: 2015-10-02; просмотров: 450. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия