Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Перспективное и плоское проецирование. Переход от произвольной камеры к стандартной




Рассмотрим любую камеру как точку - центр проецирования и экран – плоский прямоугольник в 3D пространстве, на плоскость которого идет проецирование.Наша стандартная камера, например, задается точкой (0,0,-dist) и экраном с вершинами (-xSize/2,ySize/2), ..., (xSize/2,-ySize/2). Можно задать эту систему тремя векторами, задающими с точки зрения камеры направления вперед, вправо и вверх; вектор "вперед" соединяет центр проецирования и центр экрана, вектор "вправо" соединяет центр экрана и правую его границу, вектор "вверх", соответственно, центр экрана и верхнюю его границу. Обозначим эти вектора как p, q и r соответственно, а центр проецирования за s. Вот пример для стандартной камеры.

y

| z

| /

=====^=======+

@ / + <--------- экран

@ <-----+----------- r, "вверх"

@ / +

------------------O@@@@@@@>-------x

@ | ^-+----------- q, "вправо"

@ <---------+----------- p, "вперед"

@ | +

@ ===========+

* |

/ |

|

|

 

Здесь (для стандартной камеры; обозначим ее вектора как Sp, Sq, Sr, Ss)

Sp = p = (0,0,dist)

Sq = q = (xSize/2,0,0)

Sr = r = (0,ySize/2,0)

Ss = s = (0,0,-dist)

Любые три взаимно перпендикулярных вектора и точка - центр координат задают в 3D пространстве систему координат. Так что объект мы можем рассматривать в системе обычных координат (x,y,z), в системе координат стандартной камеры(Sp,Sq,Sr) или в системе (p,q,r), соответствующей какой-то произвольной камере. В любом случае, если (a,b,c) - координаты точки в системе координат камеры (точнее, в системе координат с центром в точке s и базисом (p,q,r)), то координаты проекции точки на экране равны

screenX = xSize/2 + xSize/2 * a/c

screenY = ySize/2 - ySize/2 * b/c

В случае стандартной камеры переход от обычной системы координат к системе координат камеры очевиден:

a = x / (xSize/2)

b = y / (ySize/2)

c = (z + dist) / dist

Подставив это в формулы для screenX, screenY, получим как раз те самые формулы для проекции на стандартную камеру.

Поскольку со стандартной камерой нам достаточно удобно и понятно работать, для произвольной камеры мы должны сделаеть такое преобразование пространства, что как бы совместит произвольную камеру и стандартную камеру. То есть, такое преобразование, что вектора p, q, r перейдут в Sp, Sq, Sr, а точка s в точку Ss.

Посчитаем матрицу для *обратного* преобразования; оно должно переводить Sp, Sq, Sr, Ss в p, q, r, s. Преобразование, переводящее Ss в s (и наоборот) – это обычный паралелльный перенос; остается написать преобразование перевода Sp, Sq, Sr в p, q, r. Пусть у нас есть координаты p, q, r в системе координат (x,y,z):

p = (px,py,pz)

q = (qx,qy,qz)

r = (rx,ry,rz)

Для Sp, Sq, Sr координаты (в этой же системе) известны и равны следующему:

Sp = (0,0,dist)

Sq = (xSize/2,0,0)

Sr = (0,ySize/2,0)

Пусть T - искомая матрица перевода,

[ a b c ]

T = [ d e f ], a..i - какие-то неизвестные.

[ g h i ]

Поскольку T переводит Sp, Sq, Sr в p, q, r; то есть

p = T*Sp

q = T*Sq

r = T*Sr

то, подставляя, например, p и Sp, получаем:

[ px ] [ a b c ] [ 0 ] [ c*dist ]

[ py ] = [ d e f ] [ 0 ] = [ f*dist ], откуда

[ pz ] [ g h i ] [ dist ] [ i*dist ]

c = px/dist

f = py/dist

i = pz/dist.

Аналогично находим все остальные элементы матрицы T:

[ qx*2/xSize rx*2/ySize px/dist ]

T = [ qy*2/xSize ry*2/ySize py/dist ]

[ qz*2/xSize rz*2/ySize pz/dist ]

Но нас интересует обратное к этому преобразование. Оно задается обратной матрицей к T, то есть такой матрицей T1, что

[ 1 0 0 ]

T * T1 = T1 * T = [ 0 1 0 ]

[ 0 0 1 ]

Обратная матрица, вообще говоря, существует далеко не всегда, да и вычисление ее в общем случае - достаточно неприятная задача. Однако в данном случае из-за специального вида матрицы T (конкретнее, из-за того, что T – ортогональная матрица) она не только всегда существует, но и считается очень просто:

[ qx*2/xSize rx*2/ySize px/dist ] [ qx1 rx1 px1 ]

T = [ qy*2/xSize ry*2/ySize py/dist ] = [ qy1 ry1 py1 ]

[ qz*2/xSize rz*2/ySize pz/dist ] [ qz1 rz1 pz1 ]

 

[ qx1/lq qy1/lq qz1/lq ]

T1 = [ rx1/lr ry1/lr rz1/lr ]

[ px1/lp py1/lp pz1/lp ]

 

где

lp = px1*px1 + py1*py1 + pz1*pz1

lq = qx1*qx1 + qy1*qy1 + qz1*qz1

lr = rx1*rx1 + ry1*ry1 + rz1*rz1

Сделав сначала параллельный перенос, совмещающий s и Ss, а потом полученное преобразование, как раз и получим преобразование, переводящее произвольную камеру в стандартную.

Теперь надо выяснить, как, собственно посчитать координаты p, q, r через имеющиеся у нас характеристики: положение, направление, угол зрения и угол поворота. 3D Studio (и мы вслед за ней) рассчитывает эти вектора по такому алгоритму:

1. Считаем p = target - location

2. Если p.x == 0 и p.z == 0, то q = (0, 0, 1); иначе q = (p.z, 0, -p.x)

3. Считаем r = crossProduct(p, q) - векторное произведение p на q

4. Считаем lp = length(p) - длина p

5. Приводим r и q к длине 2*lp*tan(FOV/2)

Здесь мы не учитываем поворот камеры вокруг своей оси, его удобнее сделать после перехода к стандартной камере - в этом случае получаем обычный поворот относительно оси z на угол roll.

Таким образом, окончательная матрица перевода должна представлять собой произведение матрицы параллельного переноса, матрицы T1 и матрицы поворота вокруг оси z на угол roll:

FinalCameraMatrix = RollMatrix * T1 * MoveMatrix

Расчет матриц RollMatrix и MoveMatrix очевиден.

 


Поможем в написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой





Дата добавления: 2015-10-02; просмотров: 296. Нарушение авторских прав; Мы поможем в написании вашей работы!

Studopedia.info - Студопедия - 2014-2022 год . (0.017 сек.) русская версия | украинская версия
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7