Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Второй метод Ляпунова





Газ Молярная масса , кг/моль Эффективный диаметр молекулы , нм
Азот 0,028 0,37
Водород 0,002 0,23
Гелий 0,004 0,19
Кислород 0,032 0,29
Углекислый газ 0,044 0,40
Воздух 0,029 0,35

 

ЛИТЕРАТУРА

1. Трофимова Т.И. Курс физики: Учебное пособие для вузов. ¾ М.: Высш. шк., 2001 — 542 с.: ил.

2. Детлаф А.А., Яворский Б.М. Курс физики: Учебное пособие для вузов. — М.: Высш. шк., 2001 ¾ 542 с.: ил.

Учебно-методическое издание

Составители:

Владимир Викторович ШЕГАЙ

Наталья Викторовна Дорохова

Владимир Петрович САФРОНОВ

 

УСТОЙЧИВОСТИ ДВИЖЕНИЯ

И КАЧЕСТВЕННОЙ ТЕОРИИ

ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

 

 

Томск

 

Содержание

 

1. Второй метод Ляпунова для установившихся

движений............................................................................ 2

2. Критерии устойчивости по первому приближению

для установившихся движений...................................... 10

3. Влияние структуры сил на устойчивость движения.... 17

4. Устойчивость периодических движений……………….20

5. Приложение....................................................................... 20

 

 

Второй метод Ляпунова

для установившихся движений

Рассмотрим произвольную динамическую систему и допустим, что ее движение может быть описано системой ДУ, которая может быть приведена к нормальному виду:

(1)

Здесь - некоторые параметры, связанные с движением, как, например, координаты, скорости или вообще некоторые функции этих величин. Рассмотрим какое-нибудь частное движение нашей системы, которому соответствует некоторое частное решение уравнений (1). Мы будем это движение называть невозмущенным в отличие от других движений нашей системы, которые мы будем называть возмущенными. Разности значений величин в каком-нибудь возмущенном и невозмущенном движениях будем называть возмущениями, т.е.

- возмущения

Для исследования устойчивости движения целесообразно преобразовать уравнения (1) к новым переменным . Получим уравнения

,

которые называются дифференциальными уравнениями возмущенного движения. Функции представляют собой степенные ряды, расположенные по степеням , сходящиеся в области ( - некоторая постоянная).

О п р е д е л е н и е 1. Невозмущенное движение называется устойчивым по отношению к величинам , если для всякого положительного числа , как бы мало оно ни было, найдется другое положительное число , такое, что для всех возмущенных движений , для которых в начальный момент времени выполняются неравенства

, (2)

будут при всех выполняться неравенства

. (3)

Введем в рассмотрение функцию , которая в некоторой окрестности начала координат обладает следующими свойствами:

1) - однозначная функция;

2) частные производные непрерывны;

3) .

О п р е д е л е н и е 2. Если в окрестности начала координат (при , где - достаточно малое положительное число) функция кроме нуля может принимать значения только одного знака, то она называется знакопостоянной ( положительной или отрицательной).

О п р е д е л е н и е 3. Если знакопостояннаяфункция обращается в нуль только при , то она называется знакоопределенной ( положительной или отрицательной).

О п р е д е л е н и е 4. Функция называется знакопеременной, если она не является ни знакоопределенной, ни знакопостоянной и, следовательно, может принимать как положительные, так и отрицательные значения.

Т е о р е м а 1 (первая теорема Ляпунова об устойчивости). Если для ДУ возмущенного движения возможно найти знакоопределенную функцию , полная производная которой по времени, составленная в силу этих уравнений, есть функция знакопостоянная, знака, противоположного с , или тождественно обращается в нуль, то невозмущенное движение устойчиво.

Т е о р е м а 2 (вторая теорема Ляпунова об устойчивости). Если для ДУ возмущенного движения возможно найти знакоопределенную функцию , полная производная которой по времени, составленная в силу этих уравнений, есть функция также знакоопределенная, знака, противоположного с , или тождественно обращается в нуль, то невозмущенное движение устойчиво асимптотически.

Т е о р е м а 3 (первая теорема Ляпунова о неустойчивости). Если для ДУ возмущенного движения возможно найти функцию , такую, что ее полная производная по времени , составленная в силу этих уравнений, есть функция знакоопределенная, а сама функция не будет знакопостоянной, знака, противоположного с , то невозмущенное движение неустойчиво.

Т е о р е м а 4 (вторая теорема Ляпунова о неустойчивости). Если существует функция такая, что ее полная производная по в силу уравнений возмущенного движения имеет в области вид

,

где - положительная постоянная, а или тождественно обращается в нуль или представляет собой знакопостоянную функцию, и если в последнем случае функция не является знакопостоянной, знака, противоположного с , то невозмущенное движение неустойчиво.

Т е о р е м а 5 (теорема Четаева Н.Г.). Если для ДУ возмущенного движения можно найти такую функцию , что 1) в сколь угодно малой окрестности начала координат существует область, где , и 2) во всех точках области производная принимает положительные значения, то невозмущенное движение неустойчиво.







Дата добавления: 2015-10-02; просмотров: 523. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия