Второй метод Ляпунова
ЛИТЕРАТУРА 1. Трофимова Т.И. Курс физики: Учебное пособие для вузов. ¾ М.: Высш. шк., 2001 — 542 с.: ил. 2. Детлаф А.А., Яворский Б.М. Курс физики: Учебное пособие для вузов. — М.: Высш. шк., 2001 ¾ 542 с.: ил. Учебно-методическое издание Составители: Владимир Викторович ШЕГАЙ Наталья Викторовна Дорохова Владимир Петрович САФРОНОВ
УСТОЙЧИВОСТИ ДВИЖЕНИЯ И КАЧЕСТВЕННОЙ ТЕОРИИ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
Томск
Содержание
1. Второй метод Ляпунова для установившихся движений............................................................................ 2 2. Критерии устойчивости по первому приближению для установившихся движений...................................... 10 3. Влияние структуры сил на устойчивость движения.... 17 4. Устойчивость периодических движений……………….20 5. Приложение....................................................................... 20
Второй метод Ляпунова для установившихся движений Рассмотрим произвольную динамическую систему и допустим, что ее движение может быть описано системой ДУ, которая может быть приведена к нормальному виду: (1) Здесь - некоторые параметры, связанные с движением, как, например, координаты, скорости или вообще некоторые функции этих величин. Рассмотрим какое-нибудь частное движение нашей системы, которому соответствует некоторое частное решение уравнений (1). Мы будем это движение называть невозмущенным в отличие от других движений нашей системы, которые мы будем называть возмущенными. Разности значений величин в каком-нибудь возмущенном и невозмущенном движениях будем называть возмущениями, т.е. - возмущения Для исследования устойчивости движения целесообразно преобразовать уравнения (1) к новым переменным . Получим уравнения , которые называются дифференциальными уравнениями возмущенного движения. Функции представляют собой степенные ряды, расположенные по степеням , сходящиеся в области ( - некоторая постоянная). О п р е д е л е н и е 1. Невозмущенное движение называется устойчивым по отношению к величинам , если для всякого положительного числа , как бы мало оно ни было, найдется другое положительное число , такое, что для всех возмущенных движений , для которых в начальный момент времени выполняются неравенства , (2) будут при всех выполняться неравенства . (3) Введем в рассмотрение функцию , которая в некоторой окрестности начала координат обладает следующими свойствами: 1) - однозначная функция; 2) частные производные непрерывны; 3) . О п р е д е л е н и е 2. Если в окрестности начала координат (при , где - достаточно малое положительное число) функция кроме нуля может принимать значения только одного знака, то она называется знакопостоянной ( положительной или отрицательной). О п р е д е л е н и е 3. Если знакопостояннаяфункция обращается в нуль только при , то она называется знакоопределенной ( положительной или отрицательной). О п р е д е л е н и е 4. Функция называется знакопеременной, если она не является ни знакоопределенной, ни знакопостоянной и, следовательно, может принимать как положительные, так и отрицательные значения. Т е о р е м а 1 (первая теорема Ляпунова об устойчивости). Если для ДУ возмущенного движения возможно найти знакоопределенную функцию , полная производная которой по времени, составленная в силу этих уравнений, есть функция знакопостоянная, знака, противоположного с , или тождественно обращается в нуль, то невозмущенное движение устойчиво. Т е о р е м а 2 (вторая теорема Ляпунова об устойчивости). Если для ДУ возмущенного движения возможно найти знакоопределенную функцию , полная производная которой по времени, составленная в силу этих уравнений, есть функция также знакоопределенная, знака, противоположного с , или тождественно обращается в нуль, то невозмущенное движение устойчиво асимптотически. Т е о р е м а 3 (первая теорема Ляпунова о неустойчивости). Если для ДУ возмущенного движения возможно найти функцию , такую, что ее полная производная по времени , составленная в силу этих уравнений, есть функция знакоопределенная, а сама функция не будет знакопостоянной, знака, противоположного с , то невозмущенное движение неустойчиво. Т е о р е м а 4 (вторая теорема Ляпунова о неустойчивости). Если существует функция такая, что ее полная производная по в силу уравнений возмущенного движения имеет в области вид , где - положительная постоянная, а или тождественно обращается в нуль или представляет собой знакопостоянную функцию, и если в последнем случае функция не является знакопостоянной, знака, противоположного с , то невозмущенное движение неустойчиво. Т е о р е м а 5 (теорема Четаева Н.Г.). Если для ДУ возмущенного движения можно найти такую функцию , что 1) в сколь угодно малой окрестности начала координат существует область, где , и 2) во всех точках области производная принимает положительные значения, то невозмущенное движение неустойчиво.
|