Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Гипербола





Тенденция к сокращению параметров рынка (спад) отражается каждой из рассмотренных функций в зависимости от характера изменения. При этом меняются знаки в уравнениях - с плюса на минус. Однако моделирование процесса сжатия рынка, если происходит спад с нарастающим замедлением к концу периода, хорошо отражается функцией гиперболы:

(4.35)

Графическая форма модели тренда показана на рис. 4.10.

Трендовые модели используются также для краткосрочных прогнозов, когда есть вероятность инерционного развития рынка. Исходят из того, что сложившиеся в прошлом тенденции при соответствующих условиях можно распространить (экстраполировать) на прогнозируемый период. В формулу уравнения подставляется номер последующего периода (прогнозируемого: / + 1 и т.д.). Для долгосрочного периода, когда существенно меняются рыночные условия и окружающая среда, этот метод мало подходит. Несколько позже мы рассмотрим проблему составления прогноза.

 

Рис. 4.10. Трендовая модель тенденции развития рынка по гиперболе

 

Пример. Оценка тенденции равномерного развития рынка. Данные об изменении цены товара X приведены в табл. 4.17.

Несмотря на значительные колебания цены в отдельные месяцы, в целом за все изучаемое время она выросла в 3 раза. В среднем за месяц она увеличивалась на 10,6% (за базу принят 1-й месяц). Расчет среднего темпа роста ведется по следующей формуле[40]:

(4.36)

 

где Т̃ - средний за все периоды темп роста (чаще его называют среднегодовым темпом), в нашем примере исчислен корень 11-й степени.

Таблица 4.17







Дата добавления: 2015-10-02; просмотров: 406. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия