Методика измерений и аппаратура
Пешеходная (наземная) гамма-съемка — один из основных поисковых и разведочных методов радиометрических исследований. Ее проводят с помощью полевых радиометров и спектрометров (СРП-68, СП-4). Радиометры или спектрометры с помощью стандартных образцов (эталонов) гамма-излучения периодически градуируют. Это необходимо для определения цены деления шкал интегральной или спектральной радиоактивности. По данным градуировки можно определять мощность экспозиционной дозы гамма-излучения (в мА/кг или мкР/ч, 1 мкР/ч = 0,0717 мА/кг). Рекомендуется ежедневно проверять режим работы прибора с помощью малых контрольных ториевых или радиевых источников. Радиометрические съемки бывают как самостоятельными, выполняемыми при площадных исследованиях масштаба 1:10 000 и крупнее (при расстояниях между профилями меньше 100 м), так и попутными, проводимыми совместно с маршрутными геологическими съемками в масштабах 1:25 000 - 1:50 000. При попутных и поисковых работах гильзу выносного зонда полевого радиометра располагают на высоте 10 - 20 см от поверхности, и оператор в движении "прослушивает" радиоактивный фон пород в полосе до трех метров по направлению движения. Через каждые 5 -50м (шаг съемки) или при аномальном повышении фона гильзу с детектором опускают на землю на 0,5 - 1 мин и по стрелочному прибору снимают средний отсчет интенсивности поля. Цель попутных и поисковых гамма-съемок - выявление прежде всего радиоактивных и иных рудных полей и месторождений. В результате наземной гамма-съемки строят графики, карты графиков и карты интенсивности изменения гамма излучения. Обработка данных спектрометрической гамма-съемки сводится к вычислению концентраций урана, тория и калия-40 по скоростям счета на разных энергиях. Пешеходная гамма-съемка применяется также при литологическом картировании и радиоэкологических съемках, особенно для выявления "пятнистого" загрязнения геологической среды радиоактивными продуктами. Так как в среднем глубинность пешеходной гамма-съемки не превышает 1 м, для повышения глубинности изучения перспективных на радиоактивные руды участков проводят глубинную гамма-съемку, при которой гамма-излучение пород определяют в шпурах (бурках) глубиной до 1 м, а иногда в скважинах глубиной до 25 м. Измерения проводятся пешеходными или скважинными радиометрами. Гамма- и спектрометрические съемки используют не только для поисков и разведки радиоактивных руд, но и радиоактивных полезных ископаемых, парагенетически или пространственно связанных с ними. Например, к месторождениям редкоземельных элементов, боксита, олова, бериллия приурочено повышенное содержание тория; к месторождениям ниобия, тантала, вольфрама, молибдена - урана; к некоторым полиметаллическим месторождениям - калия. В комплексе с другими геофизическими методами гамма-съемку можно применять для поисков твердых полезных ископаемых, особенно тех, в которых акцессорными минералами могут быть радиоактивные, а также для поисков нефти и газа. Гамма-съемку можно использовать для решения задач геологического картирования. Вследствие различной естественной радиоактивности, а также поглощающей и эманирующей способности пород их можно расчленять по литологии, степени разрушенности (облегчающей миграцию радиоактивных элементов), заглинизированности (затрудняющеймиграцию), выявлять тектонические нарушения (по радиоактивных элементов в них) и решать другие задачи [14, c. 256]. Пешеходная гамма-съёмка делится на маршрутную, площадную и шпуровую. Маршрутная съёмка ведётся по маршрутам, прокладываемым по карте и, как правило, выполняется одновременно с геологической. Её масштаб определяется положением о геологической съёмке и поисках. Ввиду относительно малой проникающей способности гамма-лучей глубинность гамма-метода небольшая и составляет несколько десятков сантиметров. Поэтому гамма-съёмку ведут на обнажениях коренных пород или неглубоких наносах. Примаршрутной гамма-съёмке с целью поисков радиоактивных руд производят непрерывные измерения гамма-излучения радиометром, для чего прибор надо держать всё время включённым и прослушивать импульсы в телефон, при этом зонд держать на расстоянии 5-10 см от поверхности пород. На обнажениях необходимо сначала предварительно оценить уровень интенсивности гамма-излучения пород путём прослушивания в телефон, затем в нескольких точках зафиксировать показания прибора и занести их в дневник. При измерениях на точках зонд необходимо прикладывать вплотную к поверхности породы. Чтобы снизить погрешность отсчёта на приборе необходимо брать среднеарифметическое значение из показаний за 30-60 сек. Площадная съёмка ведётся по предварительно разбитой на местности сети наблюдений и применяется при детализации аномалий. На участках, где коренные породы перекрыты наносами, производят измерения в шпурах или каналах. Пешеходная гамма-съёмка выполняется с помощью сцинтилляционного поискового гамма-радиометра типа СРП. Радиометры – это приборы, которые измеряют плотность потока частиц и применяются обычно для контроля поверхностных загрязнений альфа- и бета-излучающими нуклидами. Эти приборы измеряют число частиц, пересекающих единичную площадь блока детектирования за единицу времени. Прибор СРП(рисунок …) конструктивно состоит из двух блоков: выносного зонда и пульта управления, соединённых кабелем. Электрическая схема радиометра состоит из следующих основных узлов: а) сцинтилляционного счётчика; б) видеоусилителя, усиливающего импульсы сцинтилляционного счётчика; в) дискриминатора, срезающего шумовые импульсы датчика; г) блокинг-генератора, формирующего импульсы стандартной формы и длительности; д) измерителя скорости счёта, состоящего из интегрирующего контура с микроамперметром; е) высоковольтного преобразователя, дающего высокое напряжение для питания ФЭУ. Сцинтилляционный счётчик располагается в основании зонда и состоит из двух частей; сцинтилляционного кристалла иодистого натрия, активированного таллием и фотоэлектронного умножителя (ФЭУ). ФЭУ представляет собой электровакуумный прибор, в котором имеется система электродов, так называемых динодов. На внутреннюю поверхность торцового стекла колбы нанесено сурьмяно-цезиевое покрытие, выполняющее роль фотокатода. В счётчике осуществляется двойное преобразование энергии ионизирующего излучения и значительное усиление электрического сигнала. Энергия падающего на кристалл гамма-излучения благодаря радиолюминисценции преобразуется в энергию фотонов света. Свет из кристалла падает на фотокатод ФЭУ и, в результате фотоэлектрического эффекта, выбивает на него электроны. Под влиянием электрического поля электроны начинают двигаться к первому диноду. Поверхность динодов покрыта слоем вещества, способного эмитировать вторичные электроны при бомбардировке их ускоренными первичными электронами. В следствии этого в ФЭУ развивается лавинообразный процесс умножения электронов. Движение электронов от динода к диноду обеспечивается специальной конструкцией ФЭУ и схемой питания, с помощью которой на динодах создаётся ступенчато возрастающее к аноду напряжение.
Рисунок - Прибор СРП
Таким образом, в сцинтилляционном счётчике ионизирующее излучение преобразуется сначала в световые фотоны, а затем в электрические импульсы, которые к тому же, усиливаются. Дополнительное усиление происходит в видеоусилителе, обладающем коэффициентом усиления около 150. С выхода ФЭУ импульсы подаются на дискриминатор, порог срабатывания которого вместе с коэффициентом усиления определяет уровень дискриминации регистрирующей схему.
|