Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоретические сведения. Интерполяционный полином не всегда дает хороший результат





Интерполяционный полином не всегда дает хороший результат. Например, аппроксимация резонансных кривых колебательных систем дает большую погрешность как на концах кривых (крыльях), так и между узлами. При увеличении степени интерполяционного полинома погрешность только возрастает (явление волнистости). Широкое распространение для решения задачи интерполяции получает аппарат сплайнов. Рассмотрим интерполяцию кубическими сплайнами. В отличии от интерполяции полиномом на каждом участке строится отдельный сплайн.

Пусть на отрезке [a, b] имеется таблично заданая функция a=x0<x1<…<xn =b.Шаг таблицы может быть непостоянным.

Постановка задачи: На отрезке [a, b] необходимо найти функцию g(x), которая удовлетворяет следующим требованиям:

1. Сплайн g(x) классу c2(a,b), т.е. непрерывны на отрезке [a,b], график g(x) не имеет острых углов (т.к. непрерывна), радиус кривизны определен в каждой точке.

2. На каждом участке g(x) является кубическим полиномом III степени, т.е. ,

где ai(k) – коэффициенты сплайна, которые определимы из дополнительных условий: – номер сплайна.

3. выполняется основное условие интерполяции:

4. вторая производная g''(x) удовлетворяет граничным условиям. В общем случае эти условия зависят от конкретной задачи. Довольно часто используется условие свободных концов сплайнов, а именно g''(a) = g''(b) = 0.

В результате построения с соблюдением всех условий будем иметь

Для определения неизвестных m0…mn используем непрерывность В результате получим систему для определения mk с n-1 уравнением и n+1 неизвестными. Её нужно доопределить для однозначного решения. Дополняем систему граничными условиями, например условиями свободных концов сплайна m0 = mn = 0.

Получаем систему n-1 уравнения с n-1 неизвестными:

 

 

В матричном виде систему можно записать следующим образом:

,

где

   
     

Матрица А – неособенная матрица, система для определения m имеет единственное решение, следовательно, сплайн-функция g(x) однозначно восстанавливается, т.е. задача о нахождении кусочно-кубической функции g(x) имеет единственное решение. Решение системы может быть найдено с помощью метода прогонки (частный случай метода Гаусса) или каким-либо другим способом.

Пример выполнения заданий







Дата добавления: 2015-10-02; просмотров: 453. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия