Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоретические сведения. Интерполяционный полином не всегда дает хороший результат





Интерполяционный полином не всегда дает хороший результат. Например, аппроксимация резонансных кривых колебательных систем дает большую погрешность как на концах кривых (крыльях), так и между узлами. При увеличении степени интерполяционного полинома погрешность только возрастает (явление волнистости). Широкое распространение для решения задачи интерполяции получает аппарат сплайнов. Рассмотрим интерполяцию кубическими сплайнами. В отличии от интерполяции полиномом на каждом участке строится отдельный сплайн.

Пусть на отрезке [a, b] имеется таблично заданая функция a=x0<x1<…<xn =b.Шаг таблицы может быть непостоянным.

Постановка задачи: На отрезке [a, b] необходимо найти функцию g(x), которая удовлетворяет следующим требованиям:

1. Сплайн g(x) классу c2(a,b), т.е. непрерывны на отрезке [a,b], график g(x) не имеет острых углов (т.к. непрерывна), радиус кривизны определен в каждой точке.

2. На каждом участке g(x) является кубическим полиномом III степени, т.е. ,

где ai(k) – коэффициенты сплайна, которые определимы из дополнительных условий: – номер сплайна.

3. выполняется основное условие интерполяции:

4. вторая производная g''(x) удовлетворяет граничным условиям. В общем случае эти условия зависят от конкретной задачи. Довольно часто используется условие свободных концов сплайнов, а именно g''(a) = g''(b) = 0.

В результате построения с соблюдением всех условий будем иметь

Для определения неизвестных m0…mn используем непрерывность В результате получим систему для определения mk с n-1 уравнением и n+1 неизвестными. Её нужно доопределить для однозначного решения. Дополняем систему граничными условиями, например условиями свободных концов сплайна m0 = mn = 0.

Получаем систему n-1 уравнения с n-1 неизвестными:

 

 

В матричном виде систему можно записать следующим образом:

,

где

   
     

Матрица А – неособенная матрица, система для определения m имеет единственное решение, следовательно, сплайн-функция g(x) однозначно восстанавливается, т.е. задача о нахождении кусочно-кубической функции g(x) имеет единственное решение. Решение системы может быть найдено с помощью метода прогонки (частный случай метода Гаусса) или каким-либо другим способом.

Пример выполнения заданий







Дата добавления: 2015-10-02; просмотров: 453. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия