Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Построение кубического сплайна в пакете MATLAB.





Function res=G(xx,x,f,M)

% исходные данныеx, f; М – значения вторых производных

n=size(x);

n=n(2);

h=zeros(1,n-1);

% вычисление шага

for i=1:n-1

h(i)=x(i+1) - x(i);

end;

for j=1:length(xx)

X=xx(j);

% определение номера интервала

for i=1:n-1

if x(i)<=X && X<x(i+1)

k=i;

break

end;

end;

% вычисление значения сплайна в промежуточной точке

yy(j)=M(k)*((x(k+1)-X)^3)/(6*h(k)) + M(k+1)*((X-x(k))^3)/(6*h(k)) +...

(f(k)-M(k)*(h(k)^2)/6)*(x(k+1)-X)/h(k)+...

(f(k+1)-M(k+1)*(h(k)^2)/6)*(X-x(k))/h(k);

end;

res=yy;

return

% вызов процедур и построение графика

>> x = [-4 -3.5 -2 0 2.1 2.5 5];

>> f=[0.5 0.2 -0.7 0 1.1 0.8 -1.6];

>> xx=linspace(-4,5,1000)

>> M = Work(x,f) % функция нахождения вторых производных

>> yy=G(xx,x,f,M);

>> plot(xx,yy,'r')

Построение кубического сплайна в пакете MATHCAD.

Задав исходные данные и определив шаг для каждого интервала, можно определить функции для формирования матриц A и H и функцию для построения кубического сплайна g(X):

 

   

Варианты лабораторных работ

Номер варианта Исходные данные
  x y 1,4 0,3365 1,8 0,5878 2,3 0,8329 2,9 1,0647 3,2 1,1632 3,6 1,2809
  x y 2,0 0,6931 2,5 0,9163 2,8 1,0296 3,3 1,1939 3,6 1,2809 4.0 1,3863
  x y 4,0 1,3863 4,5 1,5041 4,9 1,5892 5,4 1,6864 5,7 1,7405 6,0 1,7918
  x y 1,2 0,1823 1,6 0,4700 2,1 0,7419 2,6 0,9555 3,0 1,0986 3,3 1,1939
  x y 2,2 0,7885 2,7 0,9933 3,1 1,1314 3,6 1,2809 4,0 1,3863 4,3 1,4586
  x y 3,2 1,1632 3,6 1,2809 4,1 1,4110 4,6 1,5261 4,9 1,5892 5.4 1,6864
  x y 3,4 1,2238 3,9 1,3610 4,3 1,4586 4,9 1,5892 5,2 1,6487 5,6 1,7228
  x y 1,6 0,4700 2,1 0,7419 2,7 0,9933 3,2 1,1632 3,6 1,2809 4,1 1,4110
  x y 2,8 1,0296 3,1 1,1314 3,7 1,3083 4,2 1,4351 4,6 1,5261 5,0 1,6094
  x y 3,1 1,1314 3,6 1,2809 4,0 1,3863 4,6 1,5261 4,9 1,5892 5,3 1,6677
  x y 1,9 0,6419 2,5 0,9163 2,9 1,0647 3,4 1,2238 3,6 1,2809 4,0 1,3863
  x y 1,7 0,5306 2,2 0,7865 2,8 1,0296 3,2 1,1632 3,5 1,2528 4,0 1,3863
  x y 3,6 1,2809 4,2 1,4351 4,5 1,5041 5,2 1,6487 5,5 1,7047 5,9 1,7750

Варианты лабораторных работ (окончание)

Номер варианта Исходные данные
  x y 3,3 1,1939 3,9 1,3610 4,4 1,4816 5,0 1,6094 5,4 1,6864 5,9 1,7750
  x y 1,1 0,0953 1,7 0,5306 2,4 0,8755 2,8 1,0296 3,3 1,1939 3,6 1,2809
  x y 2,1 0,4718 2,5 0,9163 3,0 1,0986 3,5 1,2528 3,8 1,3350 4,2 1,4351
  x y 3,2 1,1632 3,7 1,3083 4,3 1,4586 4,9 1,5892 5,2 1,6487 5,6 1,7228
  x y 2,7 0.9933 3,3 1,1939 3.8 1,3350 4.6 1,5261 5,0 1,6094 5,5 1,7047
  x y 1,0 0,0000 1,5 0,4055 2,1 0,7419 2,7 0,9933 3,0 1,0966 3,4 1,2238
  x y 1,4 0,3365 1,9 0,6419 2,6 0,9555 3,0 1,0986 3,3 1,1939 3,6 1,2809
  x y 3,1 1,1314 3,7 1,3083 4,2 1,4351 4.8 1,5686 5,2 1,6487 5,5 1,7047
  x y 2,6 0,9555 3,2 1,1632 4,0 1,3863 4,5 1,5041 4,9 1,5692 5,4 1,6864
  x y 1,6 0,4700 2,2 0,7885 2,7 0,9933 3,4 1,2238 3,6 1,2809 4,0 1,3836
  x y 2,1 0,7419 2,7 0,9933 3,33 1,1939 3,8 1,3350 4,0 1,3863 4,4 1,4816
  x y 2,6 0,9555 3,0 1,0986 3,9 1,3610 4,5 1,5041 4,8 1,5686 5,3 1,6677
  x y 4,5 1,5041 4,9 1,5892 5,5 1,7047 6,0 1,7918 6,2 1,8245 6,5 1,8718
  x y 3,5 1,2528 3,8 1,3350 4,5 1,5041 5,1 1,6292 5,4 1,6864 5,8 1,7579
  x y 2,8 1,0296 3,3 1,1939 3,9 1,3610 4,6 1,5261 5,0 1,6094 5,5 1,7047
  x y 4,1 1,4110 4,6 1,5261 5,2 1,6487 6,0 1,7918 6,2 1,8245 6,5 1,8718

ВСТРОЕННЫЕ ФУНКЦИИ ИНТЕРПОЛИРОВАНИЯ







Дата добавления: 2015-10-02; просмотров: 552. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия