Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пакет MATHCAD. В MATHCAD можно использовать линейную интерполяцию, когда точки данных соединяются отрезками прямых





В MATHCAD можно использовать линейную интерполяцию, когда точки данных соединяются отрезками прямых, или кубическую сплайн-интерполяцию, когда точки соединятся отрезками кубической параболы.

Линейная интерполяция выполняется функцией linterp(vx,vy,x), которая возвращает линейно интерполируемое значение y, соответствующее третьему аргументу x. Аргументы vx, vy – это исходные векторы данных одинаковой длины, причем элементы вектора vx должны быть расположены в порядке возрастания.

Кубическая сплайн-интерполяция позволяет провести кривую через заданные точки так, чтобы первые и вторые производные были непрерывны в каждой точке. Эта кривая образуется кубическими полиномами, проходящими через наборы из трех смежных точек, которые затем состыковываются друг с другом, чтобы образовать одну кривую. Порядок выполнения такого вида интерполяции следующий:

1. Создать векторы исходных данных vx, vy одинаковой длины, причем элементы вектора vx должны быть расположены в порядке возрастания.

2. Вычислить вектор vs, который будет содержать значения вторых производных интерполяционной кривой в заданных точках. Вектор vs можно вычислить, используя одну из функций, которые отличаются лишь граничными условиями, а именно:

· lspline(vx,vy) – генерация сплайна, который приближается к прямой линии в граничных точках;

· pspline(vx,vy) – генерация сплайна, который приближается к параболе граничных точках;

· cspline(vx,vy) – генерация сплайна, который приближается к кубической параболе в граничных точках.

3. Чтобы найти интерполируемое значение в произвольной точке, например в точке x, необходимо вычислить функцию interp(vs,vx,vy,x).

Обратите внимание, что можно сделать то же самое, вычисляя, например, interp(cspline(vx,vy),vx,vy,x). Пример сплайн-интерполяции показан на рис. 8.1.

Для узловой и промежуточной точек найдены ординаты y соответствующих точек сплайна. Нахождение значения в узловой точке – это проверка правильности алгоритма. На рис. 8.1 также построен график интерполирующей функции и крестиками отмечены узловые точки. Для получения наилучших результатов значение x должно находиться между значениями в векторе vx.

Иногда необходимо оценить поведение функции вне отрезка, на котором заданы данные. В MATHCAD есть функция predict, которая позволяет это сделать. Эта функция использует линейный алгоритм предсказания, который бывает полезен в том случае, если экстраполируемая функция гладкая и осциллирующая, но не обязательно периодическая. Формат написания функции: predict(vy,m,n). Возвращает n предсказанных значений, используя m последних последовательных значений вектора данных vy. Элементы вектора vy должны представлять собой значения, взятые через равные интервалы. Необходимо отметить, что задача экстраполяции хорошо решаема в случае монотонных функций, представляемых полиномом невысокой степени, а также для функций, содержащих колебательную компоненту.

Рис. 8.1. Пример построения кубического сплайна

 

В заключение приведем список функций интерполяции и экстраполяции:

linterp (vx, vy, x);csline (vx, vy); psline (vx, vy); lsline (vx, vy); interp (vs, vx, vy, x); cspline (Mxy, Mz); pspline (Mxy, Mz);
lspline (Mxy, Mz); interp (vs, Mxy, Mz, v); predict (v, m, n)
.







Дата добавления: 2015-10-02; просмотров: 688. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия