Техника термовакуумного напыления
Рабочая камера установки термовакуумного напыления представляет собой цилиндрический металлический или стеклянный колпак 1, размещенный на опорной плите 8 и уплотненный резиновой прокладкой 7. Внутри рабочей камеры располагается подложкодержатель 3 с подложкой 4, ее нагреватель 2 и испаритель 6. Между испарителем и подложкой имеется заслонка 5, позволяющая в нужный момент прекращать подачу испаряемого вещества. Рабочая камера откачивается вакуумными насосами до давления 10-3 – 10-4 Па, которое измеряется вакуумметром.
Стационарная и съемная оснастка вакуумной камеры периодически очищается от наслоений предыдущих напылений. Процесс начинают с загрузки вакуумной камеры: испаряемый материал помещают в тигель (испаритель), подложки устанавливают в подложкодержатели, маски – в маскодержатели. В зависимости от конструкции внутрикамерных устройств техника выполнения загрузки может различаться. Затем камеру герметизируют и производят откачку воздуха. При закрытой заслонке производят нагрев подложек до заданной температуры и испарителей до температуры испарения. Производят ионную очистку поверхностей подложек. Откачивают камеру до предельного вакуума. После этого открывают заслонку и ведут напыление пленки. При получении заданной толщины пленки процесс напыления прекращают, перекрывая атомарный поток заслонкой. Подложки охлаждают и после этого в камеру напускают воздух и производят выгрузку подложек. В зависимости от способа нагрева осаждаемого вещества различают резистивные, электронно-лучевые и индукционные испарители. Резистивные испарители изготавливают из проволоки и лент тугоплавких металлов, а также из графита и диборида титана TiB2 (рис.2.6). Рис.2.6. Резистивные испарители: а, б – проволочные; в, г – ленточные; д, е – тигельные; 1 – нагреватель, 2 – испаряемый материал, 3 – компенсаторы, 4 – тигель, 5 - крышка
Проволочные испарители (рис. 2.6, а, б) просты по конструкции, хорошо компенсируют тепловое расширение, но недолговечны, не позволяют испарять сыпучие материалы и объем их мал. Ленточные испарители для устранения тепловой деформации имеют компенсаторы (рис.2.6, в) и позволяют испарять большее, чем проволочные, количество вещества. Материалы, склонные к разбрызгиванию и выбрасыванию крупных частиц, осаждают из испарителей, снабженных сетчатой крышкой (рис.2.6, г). В тигельных испарителях из теплостойкой керамики (Al2O3, BeO, ThO2) устранен непосредственный контакт нагревателя с испаряемым материалом и значительно увеличена загрузка (рис.2.6, д). Графитовый тигельный испаритель (рис.2.6, е) представляет собой стержень с выфрезерованным углублением в центре, куда закладывают испаряемое вещество. Электронно-лучевые испарители (рис.2.7, а) основаны на преобразовании кинетической энергии электронов в энергию нагрева при бомбардировке ими испаряемого материала. Эти испарители применяются при нанесении пленок тугоплавких материалов, не загрязняют камеру материалом нагревателя тигля и могут быть использованы более длительное время, чем резистивные. Площадь сфокусированного электронного пучка 3 – 60 мм2, напряжение на аноде 6 – 10 кВ, скорость испарения до 5 мг/с. Индукционные испарители (рис.2.7, б) основаны на разогреве материала высокочастотным электромагнитным полем, создаваемым индуктором.
Рис. 2.7. Электронно-лучевой (а) и индукционный (б) испарители: 1 – катод, 2 – управляющий электрод, 3 – анод, 4 - магнитная фокусирующая система, 5 – электронный луч, 6 – испаряемый материал, 7 - индуктор
К материалам испарителей предъявляются следующие требования: 1) между материалом испарителя и испаряемым веществом не должно происходить химических реакций; 2) не должны образовываться легколетучие сплавы этих веществ, так как в противном случае происходит загрязнение наносимых пленок и разрушение испарителя; 3) давление пара материала испарителя при температуре испарения напыляемого вещества должно быть пренебрежимо малым.
|