Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

С малой поверхностью и точечных испарителей





 

Для анализа распределения пленки по толщине используют, как правило, идеальную модель испарения и конденсации, которая предусматривает выполнение законов Ламберта-Кнудсена и формулы Лэнгмюра (2.1) для скоростей испарения, а также полную конденсацию паров испаренного вещества на подложке (коэффициент конденсации равен 1 независимо от материала подложки и интенсивности испаренного вещества). Процесс испарения происходит с зеркальной поверхности расплава.

Распределение испаренного вещества описывается уравнениями (2.3) и (2.4), в зависимости от угла падения и расстояния от испарителя до подложки. Следовательно, профиль толщины пленки может быть выведен для любой формы площади подложки и любого положения подложки относительно испарителя. Однако обычно используют плоские подложки и располагают их параллельно эффективной плоскости испарения.

Для того чтобы перейти от массы к толщине пленки, выделим малое количество вещества с массой dMr, которое занимает объем dArdпл. толщину пленки запишем в виде

, (2.5)

где ρ – плотность материала подложки.

Для плоскопараллельной подложки, отстоящей от испарителя на расстоянии h, угол падения θ равен углу испарения φ и cos θ = cos φ = h/r. Схематически система испаритель – подложка представлена на рис.2.3. Расстояние r от испарителя до элемента подложки dAr при данном h меняется с расстоянием l от центра подложки до элемента dAr по закону r2 = l2 + h2. если эти соотношения подставить в (2.3) и 2.4), то будем иметь: для испарителя с малой площадью

, (2.6)

для точечного испарителя

. (2.7)

Оба типа испарителя можно охарактеризовать с помощью величины отношения d/do, где do – толщина в центре подложки при l = 0 (рис.2.3.).

    Рис.2.3. Испарение на плоскопараллельную подложку

Тогда для испарителя с малой площадью

, (2.8)

для точечного испарителя

. (2.9)

2.4. Распределение пленки по толщине для кольцевого и дискового испа­рителей.

На практике испарение осуществляют из испарителей, поверх­ность кото­рых не является бесконечно малой. При использовании ис­парителей конечных размеров распределение пленок по толщине можно определить суммированием в данной точке по толщине вещества, испарен­ного из всех элементов dAe ис­парителя. При этом предполагается, что испарение происходит из всех точек испарителя с одной и той же скоростью.

  Рис. 2.4. Испарение из элемента dAe кольцевого испарителя на элемент под­ложки dAr в плоскости Х У  

 

Рассмотрим модель испарителя в виде круглого диска радиуса s поверх­ность испарения, которого параллельна плоской поверхности подложки. Сле­довательно, распределение испаренного вещества по подложке должно быть центрально-симметричным и описываться одной переменной, а именно, рас­стоянием от центра l. Схематично изобра­жение системы испаритель - под­ложка приведено на рис.2.4. Диффе­ренциальный элемент поверхности тонкого кольца можно представить в виде , где α - угол между l и проекцией s на плос­кость испарителя, то . Подстановка этого соот­ношения, а также уравнения (2.5) в выражение (2.3) для испарителя с малой поверхностью приводит к следующему выражению для распре­деления по толщине от дискового испарителя

. (2.10)

Тройной интеграл возникает вследствие того, что необходимо рассмотреть полную испаренную массу Ме со всех элементов поверх­ности и их вре­менную зависимость. После замены расстояния r на величины, характери­зующие положение данной точки подложки от­носительно испарителя, , может быть проведено интегрирование по α до 2π. После интегрирования имеем

. (2.11)

Отсюда легко получить окончательное выражение для d в случае беско­нечно тонкого кольца, поскольку представляет собой полную массу испаренного вещества.

Таким образом, уравнение (2.11) для тонкого кольцевого испа­рителя при­нимает вид:

. (2.12)

Однородность по толщине покрытия, получаемого от такого тон­кого коль­цевого испарителя, легко описать, используя толщину в центре подложки (при l = 0):

. (2.13)

В этом случае параметром, характеризующим однородность по толщине, будет отношение d/d0. Помимо относительного расстояния от центра l/h уравнения (2.12) и (2.13) содержат также второй параметр - относительный ра­диус испарителя s/h.

Рассмотрим теперь случай круглого дискового испа­рителя. Уравнение (2.11) следует проинтегрировать по ве­личине радиуса диска s. После интегрирования по частям имеем

 

. (2.14)

 

В этом случае полная масса испаренного вещества может быть представ­лена в виде . Выражение для толщины в случае круглого диска может быть записано в следующем виде:

(2.15)

и

. (2.16)

 

Следует отметить, что распределение по толщине, полученное от диско­вого или кольцевого испарителя, диаметр или ширина кото­рых, конечны, но малы по сравнению с расстоянием испаритель - под­ложка, адекватно описыва­ются формулами для источника с одним эле­ментом поверхности и тонкого кольца.

Преимущества испарителей с большой поверхностью заключается в пер­вую очередь в том, что они при необходимых для испарения температурах имеют большую скорость испарения в соответствии с низким давлением паров. Следовательно, в таких испарителях веро­ятность химического взаимодействия между испаряемым веществом и материалом испарителя уменьшается.

 







Дата добавления: 2015-10-02; просмотров: 1358. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия