Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Коммерческое предложение. не выполняется условие , т.е


Пусть для уравнения (1)

не выполняется условие , т.е. .

Иногда удается подобрать такую функцию , после умножения на которую всех членов уравнения (1), левая часть уравнения становится полным дифференциалом. Общее решение полученного уравнения совпадает с общим решением первоначального уравнения. Функция называется интегрирующим множителем уравнения (1).

Найдем формулы, по которым можно вычислить интегрирующий множитель. Умножим обе части уравнения (1) на множитель :

Для того, чтобы это уравнение было уравнением в полных дифференциалах, необходимо и достаточно выполнение условия

т.е.

или

Разделим обе части этого равенства на , получим

(2)

Всякая функция , удовлетворяющая уравнению (2), является интегрирующим множителем уравнения (1).

Уравнение (2) является уравнением в частных производных с неизвестной функцией , зависящей от двух переменных х и у.

Задача нахождения из уравнения (2) не из легких. Только в некоторых частных случаях удается найти функцию .

Пусть - интегрирующий множитель, который зависит только от у, тогда .

Из уравнения (2) получаем обыкновенное дифференциальное уравнение , из которого определим , а затем .

Его можно решить, если только выражение зависит только от у.

Аналогично, если - интегрирующий множитель, зависит только от х.

Из уравнения (2) получим уравнение

Решаем его, если выражение зависит только от х.

Пример. Г.Н. Берман № 4061

Выражение не подходит

Выражение подходит

Умножим обе части данного уравнения на

Новое уравнение есть уравнение в полных дифференциалах.

Общее решение данного уравнения

 

Коммерческое предложение

Мы используем только высококачественные комплектующие (немецкий пластиковый профиль KBE и фурнитуру ROTO, профиль европейского качества MONTBLANC с фурнитурой VORNE), современное оборудование на производстве. 100% контроль качества при изготовлении пластиковых окон позволяют нам успешно работать! Скидка на КВЕ 20%, на Мonblanс 37%.

 





<== предыдущая лекция | следующая лекция ==>
Интегрирующий множитель | Свобода дороже секса!

Дата добавления: 2015-10-12; просмотров: 256. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия