Качественный анализ работы биполярного транзистора
Транзисторы представляют собой полупроводниковые кристаллы, состоящие из двух областей одного типа проводимости, разделенных областью другого типа проводимости — n— р—п- или р—п— р-структуры. Каждая из областей имеет омический контакт с внешними электродами. Напряжения подводятся к трем контактам таким образом, что переход Рис. 1.5. Схемы включения транзисторов: а—с общей базой (ОБ); б — с общим эмиттером (ОЭ)
эмиттер — база смещен в прямом направлении, в то время как другой переход коллектор — база — в обратном направлении. Область, разделяющую эмиттер и коллектор, называют базой. Возможно несколько способов включения транзисторов. Если общим электродом для входной и выходной цепей транзистора является база, то такое включение называют включением по схеме с общей базой (ОБ) (рис. 1.5, а). Однако эта схема, как будет дальше показано, не обеспечивает усиления по току, и на практике чаще используется схема с общим эмиттером (ОЭ) (рис. 1.5,6), которая обеспечивает усиление по току. Рассмотрим одномерную модель р—п —р-транзистора (рис. 1.6) в схеме с ОБ. Соответствующие энергетические диаграммы для равновесного состояния и для нормального усилительного режима включения приведены на этом же рисунке. В нормальном усилительном режиме потенциальный барьер эмиттера понижается, и происходит инжекция дырок в базу и электронов в эмиттер.
Рис. 1.6. Схема включения и зонные диаграммы транзистора: а—в равновесном состоянии; б — в нормальном усилительном режиме.
Обычно база транзистора легирована значительно меньше, чем слой эмиттера и коллектора, и pp >> nn. Поэтому электронной составляющей тока инжекции можно пренебречь, и весь ток через переход будет создаваться дырками. Носители, инжектированные эмиттером, проходят слой базы и, если толщина базы W достаточно мала (W<<Lp), доходят до коллекторного перехода и собираются им. В случае тонкой базы рекомбинация дырок в ней будет мала и коллекторный ток практически равен инжектированному эмиттером. Небольшая разность между эмиттерным и коллекторным токами составляет ток базы, обусловленный электронами, пополняющими убыль электронов в базе при рекомбинации с дырками. Эффективность эмиттера оценивают величиной коэффициента инжекции γ, равного отношению дырочного инжекционного тока к полному току эмиттера: γ = Ipe/(Ine+ Ipe) = (1+ Ine/Ipe)-1» 1- Ine/Ipe (1.13) поскольку Ine/Ipe <<1. Используя выражения (1.10), (1.11) и соотношение Эйнштейна, получаем: γ =1- где σn =qμnnn и σp =qμpnp — удельные проводимости базы и эмиттера. Во время прохождения базы часть дырок р будет рекомбинировать в ней. Поэтому ток дырок, приходящих на коллектор, равен Ipc = γβIpe = αIe, где α — коэффициент передачи эмиттерного тока в схеме с ОБ, β = Ipc/Ipe» 1- Таким образом, чем меньше ширина базы W, тем большее количество неравновесных дырок будет достигать коллектора и увеличивать ток коллекторного перехода. В этом в общих чертах заключается механизм управления током коллекторного перехода при помощи тока эмиттерного перехода. В р—п— р-транзисторе перенос тока осуществляется дырками. Для прибора n— р— n-типа результат аналогичен, но перенос осуществляется электронами и полярность напряжений Ve и Vc противоположная. И в том и в другом случаях ток переносится неравновесными неосновными носителями.
|