Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифракция электронов на кристаллической решетке





Как известно, кристаллическая решетка является трехмерной дифракционной решеткой для электронных волн, длина которых соизмерима или меньше расстояния между атомными плоскостями. Получающаяся в результате дифракционная картина или электронограмма является отображением периодической структуры кристалла (рис. 2.2).

 

Рис. 2.2. Рассеяние электронного пучка. 1- электронный пучок, 2 – объект, 3 – дифракционные пятна.

Дифракция электронных волн на решетке объясняется взаимодействием падающей и рассеянных каждым атомом волн. В полном объеме такое взаимодействие может быть описано известными уравнениями Лауэ. Однако хорошие результаты дает описание дифракции с помощью более простого соотношения Вульфа-Брэгга (В-Б) (рис. 2.3):

n·l=2d·sinq,

где n- порядок дифракции, l - длина волны; d - межплоскостное расстояние, q – угол дифракции.

 

Рис. 2.3. Отражение электронных волн от плоскостей кристаллической решетки

Вторичные электронные волны, отраженные от параллельных атомных плоскостей, при условии совпадения фаз сбудут усиливать друг друга, образуя дифракционный максимум или рефлекс, а при несовпадении фаз гасить. Например, при длине волны ~ 0,003 нм и характерном межплоскостном расстоянии для плотно упакованных плоскостей ~0,3 нм углы дифракции θ составляют около 0,01 рад (l0), т.е. весьма малы, что характерно для дифракции быстрых электронов.

Отраженные под разными углами электронные волны образуют дифрагированные электронные пучки, которые могут быть зарегистрированы на экране в фоточувствительном слое в виде расположенных в определенном порядке пятен электронограммы. Появление порядка в расположении пятен можно представить следующим образом (рис. 2.4): падающий на кристалл сверху. со стороны наблюдателя ЭП может быть отражен атомными плоскостями, нормальными к плоскости рисунка. Направления отражения перпендикулярны отражающим плоскостям. ЭП, отраженные от разных плоскостей (100), (110), (001), (001), при соблюдении условия В-Б образуют дифракционные максимумы, наблюдаемые на экране. В общем случае отражения могут получаться от плоскостей, проходящих через любые три атома решетки. Чем меньше расстояния между плоскостями, тем дальше будут располагаться рефлексы от центрального пятна, образованного проходящим пучком, и они могут не попасть на экран.

Рис. 2.4. Схема, отражающая образование электронограммы при дифракции электронных волн на монокристалле

Для расшифровки и анализа дифракционных картин в электронографии и рентгенографии используется известное в физике твердого тела понятие "обратной" решетки, где каждой.плоскости реальной решетки в "обратной" соответствует узел, находящийся на конце радиуса-вектора g, нормального к данной плоскости (рис. 2.4). Длина вектора обратно пропорциональна межплоскостному расстоянию в реальной решетке. Можно показать, что расположение рефлексов на электронограмме совпадает с соответствующим сечением "обратной" решетки, и для расшифровки структур кристалла с помощью электронограммы надо знать соотношение между прямой и "обратной" решетками. Здесь следует обратить внимание на то, что для простой кубической решетки '"обратной" является также простая кубическая, для ГЦК - ОЦК, для ОЦК - ГЦК, для ГПУ - гексагональная. Взаимное расположение узлов наиболее характерных сечений "обратных" решеток для оперативного пользования сведены в таблицы.

При анализе электронограммы может быть получена следующая информация о кристалле:

-определены межплоскостные расстояния,

-тип кристаллической решетки;

-состав неизвестного вещества, если число входящих видов атомов невелико,

-ориентация кристаллической решетки относительно ЭП,

-ориентация различных составляющих структуры в кристаллической решетке (дислокаций, двойников, дефектов упаковки, границ зерен).

Для эффективного анализа фазового и химического состава нанообъектов с помощью электронограммы необходимо измерение множества межплоскостных расстояний для различных кристаллических веществ. Поэтому одной из характерных задач анализа электронограмм является определение межплоскостных расстояний d по расстоянию между дифракционными рефлексами. При этом используются простые соотношения, наглядно следующие из рисунка 2.5.

R/L = tg2q,

где R - расстояние от центрального (нулевого) рефлекса до рефлекса от дифрагированного ЭП, L – расстояние от образца до экрана, q - угол дифракции.

Для малых углов tg2q =2·sinq, учитывая l=2·d·sinq имеем

R·d= l·L.

Рис. 2.5. Определение межплоскостного расстояния с помощью электронограммы

Таким образом, если для конкретного дифракционного пучка могут быть измерены величины L, R, l, то можно определить межплоскостные расстояния семейства плоскостей решетки, ответственного, за появление данного рефлекса. Однако чаще всего с помощью эталонов с известными значениями d определяют l·L (постоянную прибора для каждого ускоряющего напряжения).

 







Дата добавления: 2015-10-12; просмотров: 2222. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия