Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Взаимодействие электронного пучка с веществом





При зондировании нанообъектов электронным пучком (ЭП) возникают следующие известные эффекты (рис. 2.1).

Рис.2.1. Эффекты, возникающие при взаимодействии электронного пучка с веществом. 1- электронный пучок, 2 – флюоресценция, катодолюминесценция, 3 – Оже-электроны, 4 – упруго отраженные электроны, 5 – вторичные электроны, 6 – рентгеновские лучи, 7 – поглощенные электроны, 8 – дифрагированные электроны, 9 – прошедшие электроны

 

1) Дифракция электронов на кристаллической решетке в соответствии с условием Вульфа-Брэгга. По полученной дифракционной картине проводится качественный и количественный анализ кристаллической структуры образца и его состава, измерение межплоскостных расстояний, определение типа кристаллической решетки, ориентации кристалла относительно электронного пучка, ориентационной зависимости между зернами поликристалла или составляющими структуры (двойниками, выделениями и т.д.) и матрицей, а также определение кристаллографической ориентации дефектов кристаллической структуры - дислокаций, различных поверхностей разделе, например, границ зерен.

2) Локальное изменение условий дифракции электронов, связанное с присутствием в кристаллическом материале дефектов. Взаимодействие с дефектами сказывается на распределении электронов, прошедших через образец. Это позволяет наблюдать электронно-микроскопическое изображение тонкой дефектной структуры. Обычно используется один электронный пучок - или недифрагированный (светлопольное изображение), или дифрагированный (темнопольное изображение). Однако в формирование изображения можно включить не один, а несколько электронных пучков. В этом случае удается увидеть картину, соответствующую расположению атомов в кристалле и даже различить атомы различных элементов. Это дает возможность осуществить самый тонкий фазовый и химический анализ нанообъекта. При изучении нанообъектов чаще всего используют контраст в проходящем или дифрагированном пучке, позволяющий непосредственно определять размеры, форму и расположение нанообъектов.

3) Упругое отражение электронов от поверхности дает информацию, как о составе поверхностного слоя образца, так и о рельефе его поверхности. Оно используется, в основном, в растровом электронном микроскопе, работающем на отражение, а также при отражении медленных или быстрых электронов от поверхности нанослоев.

4) Образование вторичных электронов, являющихся электронами проводимости, выбитыми из поверхности образца электронным пучком, чаще всего используются для получения изображения поверхности в растровом электронном микроскопе, работающем на отражение.

5) Генерация характеристического рентгеновского излучения, обусловленного взаимодействием электронов пучка и внутренних орбиталей атомов. Энергия образующегося рентгеновского квантa зависит от атомного номера элемента, поэтому регистрация такого излучения позволяет получить сведения о химическом составе, материала, что широко используется как в просвечивающей, так и в отражающей электронной микроскопии

6) Генерация тормозного рентгеновского излучения, которое образует фон, содержащий информацию о среднем атомном номере материала образца и, следовательно, о его составе.

7) Поглощение энергии рентгеновского излучения электронной подсистемой атомов. Оно также содержит информацию об элементном составе.

8) Оже-эффект, возникающий из-за перехода ионизированного электронным пучком атома из возбужденного в стационарное состояние. При этом наряду с характеристическим рентгеновским излучением происходит испускание оже-электронов, обладающих энергией, также характерной для данного сорта атомов, оже-электронная спектроскопия эффективна только для слоя поверхности толщиной около 1 нм. Наилучшие результаты получаются при анализе более легких элементов.

9) Катодолюминесценция, представляющая собой вынужденное излучение в более длинноволновом, чем рентгеновское излучение, диапазоне; характерна для полупроводников и диэлектриков.

10) Флуоресценция, появляющаяся под действием рентгеновского излучения, возбужденного первичным электронным пучком. В результате поглощения рентгеновского излучения может возникать, вторичное характеристическое рентгеновское излучение.

11) Поглощение электронов исследуемым образцом, что приводит к появлению электрического тока. Величина тока может дать представление о фазовом и элементном составе образца.

 







Дата добавления: 2015-10-12; просмотров: 1268. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия