Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методы его нахождения


}

((Q ВЫБОР 1 ФАЙЛ))

Первообразной для функции f (x) на интервале (a, b) называется функция F (x), если...

((V ФАЙЛ))

(x) = F (x)

((V ФАЙЛ))

; (x) = ; (x)

((V ФАЙЛ +))

; (x) = f (x)

((V ФАЙЛ))

f (x) = F (x)

((Q ВЫБОР 1))

Первообразная функция F (x) для функции f (x) = cos x равна...

((V ФАЙЛ))

- cos x + C

((V ФАЙЛ))

- sin x + C

((V ФАЙЛ +))

sin x + C

((V ФАЙЛ))

cos x + C

((Q ВЫБОР 1 ФАЙЛ))

Первообразная для функции равна...

((V ФАЙЛ))

arctg x + C

((V ФАЙЛ))

arcctg x + C

((V ФАЙЛ))

ctg x + C

((V ФАЙЛ +))

tg x + C

((Q ВЫБОР 1))

F (x) - одна из первообразных для функции f (x). Тогда любая первообразная F(x) для функции f (x) равна:

((V ФАЙЛ))

F(x) = F (x) + f (x)

((V ФАЙЛ))

F(x) = f (x)

((V ФАЙЛ +))

F(x) = F (x) + C

((V ФАЙЛ))

F(x) = F (x)

((Q ВЫБОР 1))

Первообразная функция F (x) для функции f (x) = x равна:

((V ФАЙЛ))

x + C

((V ФАЙЛ))

- x + C

((V ФАЙЛ +))

((V ФАЙЛ))

((Q СООТВ 1))

Соответствие первообразной F (x) функции f (x):

((V 1 1))

((V 1 2))

((V 1 3))

((V 1 4))

((V 1 5))

((V 1 6))

((V 2 1 ФАЙЛ))

((V 2 2 ФАЙЛ))

((V 2 3 ФАЙЛ))

((V 2 4 ФАЙЛ))

((V 2 5 ФАЙЛ))

((V 2 6 ФАЙЛ))

((Q ВЫБОР 1 ФАЙЛ))

F (x) - первообразная для функции f (x). Тогда неопределённым интегралом называется...

((V ФАЙЛ))

сама первообразная F (x)

((V ФАЙЛ))

сумма F (x) + f (x)

((V+))

совокупность всех первообразных F (x) + C

((V))

совокупность всех функций f (x) + C, где С - произвольная постоянная

((Q ВЫБОР 1 ФАЙЛ))

- дифференциал неопределённого интеграла равен...

((V))

f (x)

((V))

F (x)

((V+))

f (x) dx

((V))

F (x) dx

где F (x) - первообразная функции f (x)

((Q ВЫБОР 1 ФАЙЛ))

F (x) - первообразная для функции f (x). Тогда равен...

((V))

f (x)

((V))

F (x)

((V+))

f (x) + C

((V))

F (x) + C

где С - произвольная постоянная

((Q ВЫБОР 1 ФАЙЛ))

равен...

((V))

((V +))

С

((V))

((V))

х

((Q ВЫБОР 1 ФАЙЛ))

равен...

((V))

((V +))

х + С

((V))

х 2

((V))

х 2 + С

((Q СООТВ 1))

Соответствие неопределённых интегралов функциям:

((V 1 1 ФАЙЛ))

((V 1 2 ФАЙЛ))

((V 1 3 ФАЙЛ))

((V 1 4 ФАЙЛ))

((V 1 5 ФАЙЛ))

((V 1 6 ФАЙЛ))

((V 2 1 ФАЙЛ))

((V 2 2 ФАЙЛ))

((V 2 3 ФАЙЛ))

((V 2 4 ФАЙЛ))

((V 2 5 ФАЙЛ))

((V 2 6 ФАЙЛ))

((Q СООТВ 1))

Соответствие функций неопределённым интегралам:

((V 1 1 ФАЙЛ))

((V 1 2 ФАЙЛ))

((V 1 3 ФАЙЛ))

((V 1 4 ФАЙЛ))

((V 1 5 ФАЙЛ))

((V 1 6 ФАЙЛ))

((V 2 1 ФАЙЛ))

((V 2 2 ФАЙЛ))

((V 2 3 ФАЙЛ))

((V 2 4 ФАЙЛ))

((V 2 5 ФАЙЛ))

((V 2 6 ФАЙЛ))

((Q СООТВ 1))

Соответствие функций неопределённым интегралам:

((V 1 1 ФАЙЛ))

((V 1 2 ФАЙЛ))

((V 1 3 ФАЙЛ))

((V 1 4 ФАЙЛ))

:

((V 1 5 ФАЙЛ))

((V 1 6 ФАЙЛ))

((V 2 1 ФАЙЛ))

((V 2 2 ФАЙЛ))

((V 2 3 ФАЙЛ))

((V 2 4 ФАЙЛ))

((V 2 5 ФАЙЛ))

((V 2 6 ФАЙЛ))

((Q ВЫБОР 1))

равен...

((V))

x + C

((V ФАЙЛ))

2 x 2 + C

((V ФАЙЛ +))

((V ФАЙЛ))

2 x + C

((Q ВЫБОР 1 ФАЙЛ))

равен...

((V ФАЙЛ))

((V ФАЙЛ))

((V ФАЙЛ +))

((V ФАЙЛ))

((Q ВЫБОР 1 ФАЙЛ))

равен...

((V ФАЙЛ))

((V ФАЙЛ +))

((V ФАЙЛ))

((V ФАЙЛ))

((Q ВЫБОР 1 ФАЙЛ))

сводится к табличному заменой...

((V))

x = t

((V ФАЙЛ))

((V ФАЙЛ +))

t = x 2

((V ФАЙЛ))

((Q ВЫБОР 1))

равен...

((V ФАЙЛ))

e 2 x + C

((V ФАЙЛ))

((V ФАЙЛ +))

((V ФАЙЛ))

2 e 2 x + C

((Q ВЫБОР 1 ФАЙЛ))

сводится к табличному заменой...

((V ФАЙЛ +))

t = ln x

((V ФАЙЛ))

((V ФАЙЛ))

t = ln3 x

((V ФАЙЛ))

t = x

((Q ВЫБОР 1 ФАЙЛ))

равен...

((V ФАЙЛ +))

((V ФАЙЛ))

((V ФАЙЛ))

((V ФАЙЛ))

((Q ВЫБОР 1 ФАЙЛ))

равен...

((V ФАЙЛ))

((V ФАЙЛ))

(x 2 + 4) + C

((V ФАЙЛ))

ln(x 2 + 4) + C

((V ФАЙЛ +))

((Q СООТВ 1))

Соответствие функций неопределённым интегралам:

((V 1 1 ФАЙЛ))

((V 1 2 ФАЙЛ))

((V 1 3 ФАЙЛ))

((V 1 4 ФАЙЛ))

((V 1 5 ФАЙЛ))

((V 1 6 ФАЙЛ))

((V 2 1 ФАЙЛ))

((V 2 2 ФАЙЛ))

((V 2 3 ФАЙЛ))

((V 2 4 ФАЙЛ))

((V 2 5 ФАЙЛ))

((V 2 6 ФАЙЛ))

((Q ВЫБОР 1 ФАЙЛ))

Формула интегрирования по частям. ò udv равен...

((V ФАЙЛ +))

uv - ò vdu

((V ФАЙЛ))

u - ò vdu

((V ФАЙЛ))

vu - ò vdu

((V ФАЙЛ))

v - ò udv

((Q ВЫБОР 1 ФАЙЛ))

Применить формулу интегрирования по частям в интеграле ò x 2ln xdx при u =...

((V ФАЙЛ))

x 2

((V ФАЙЛ))

x

((V ФАЙЛ))

x ln x

((V ФАЙЛ +))

ln x

((Q ВЫБОР 1 ФАЙЛ))

Применить формулу интегрирования по частям в интеграле ò x 2cos 2 xdx при u =...

((V ФАЙЛ))

cos2 x

((V ФАЙЛ +))

x 2

((V ФАЙЛ))

x cos2 x

((V ФАЙЛ))

x

((Q ВЫБОР 1 ФАЙЛ))

ò xe - xdx равен...

((V ФАЙЛ))

((V ФАЙЛ +))

((V ФАЙЛ))

((V ФАЙЛ))

((Q ВЫБОР 1 ФАЙЛ))

òarctg xdx равен...

((V ФАЙЛ))

((V ФАЙЛ +))

((V ФАЙЛ))

((V ФАЙЛ))

((Q ВЫБОР 1 ФАЙЛ))

равен...

((V ФАЙЛ))

(x ± a) + C

((V ФАЙЛ))

((V ФАЙЛ +))

ln| x ± a | + C

((V ФАЙЛ))

((Q ВЫБОР 1 ФАЙЛ))

равен...

((V ФАЙЛ))

(x + 2)3 + C

((V ФАЙЛ +))

((V ФАЙЛ))

2(x + 2)2 + C

((V ФАЙЛ))

((Q ВЫБОР 1 ФАЙЛ))

равен...

((V ФАЙЛ +))

arctg(x + 1) + C

((V ФАЙЛ))

((V ФАЙЛ))

((V ФАЙЛ))

((Q ВЫБОР 1 ФАЙЛ))

равен...

((V ФАЙЛ))

((V ФАЙЛ +))

((V ФАЙЛ))

((V ФАЙЛ))

((Q ВЫБОР 1 ФАЙЛ))

равен...

((V ФАЙЛ))

ln(x 2 + 4) + C

((V ФАЙЛ))

((V ФАЙЛ +))

((V ФАЙЛ))

((Q ВЫБОР 1 ФАЙЛ))

равен...

((V ФАЙЛ))

arctg(x + 2) + C

((V ФАЙЛ))

((V ФАЙЛ +))

((V ФАЙЛ))

((Q ВЫБОР 1 ФАЙЛ))

равен...

((V ФАЙЛ))

ln| x 2 - 4 x + 8 | + C

((V ФАЙЛ +))

((V ФАЙЛ))

((V ФАЙЛ))

((Q ВЫБОР 1 ФАЙЛ))

равен...

((V ФАЙЛ))

ln| x 2 - 4 x + 5 | + C

((V ФАЙЛ))

ln| x 2 - 4 x + 5 |

((V ФАЙЛ +))

ln| x 2 - 4 x + 5 | + 9arctg (x - 2) + C

((V ФАЙЛ))

arctg (x - 2) + C

((Q ВЫБОР 1 ФАЙЛ))

равен...

((V ФАЙЛ))

ln | x 2 + 4 | + C

((V ФАЙЛ +))

((V ФАЙЛ))

((V ФАЙЛ))

((Q ВЫБОР 1 ФАЙЛ))

Рациональная дробь (рациональная функции) (Pn (x), Qm (x) - многочлены степени n и m) является правильной, если...

((V ФАЙЛ))

n £ m

((V ФАЙЛ))

n > m

((V ФАЙЛ +))

n < m

((V ФАЙЛ))

n = m

((Q ВЫБОР 1 ФАЙЛ))

равен...

((V ФАЙЛ))

ln | x - 2 | - ln | x + 5 | + C

((V ФАЙЛ +))

ln |(x - 2)(x + 5)| + C

((V ФАЙЛ))

ln | x + 5 | - ln | x - 2 | + C

((V ФАЙЛ))

((Q ВЫБОР 1 ФАЙЛ))

равен...

((V ФАЙЛ +))

((V ФАЙЛ))

((V ФАЙЛ))

((V ФАЙЛ))

((Q ВЫБОР 1 ФАЙЛ))

равен...

((V ФАЙЛ))

sin 2 x + C

((V ФАЙЛ +))

((V ФАЙЛ))

((V ФАЙЛ))

- sin 2 x + C

((Q ВЫБОР 1))

равен...

((V ФАЙЛ))

cos 3 x + C

((V ФАЙЛ))

((V ФАЙЛ))

- cos 3 x + C

((V ФАЙЛ +))

((Q ВЫБОР 1 ФАЙЛ))

равен...

((V ФАЙЛ))

ctg x + C

((V ФАЙЛ))

- ctg x + C

((V ФАЙЛ))

tg2 x + C

((V ФАЙЛ +))

((Q ВЫБОР 1))

равен...

((V ФАЙЛ))

((V ФАЙЛ))

((V ФАЙЛ +))

((V ФАЙЛ))

((Q ВЫБОР 1))

равен...

((V ФАЙЛ))

((V ФАЙЛ))

((V ФАЙЛ))

((V ФАЙЛ +))

((Q ВЫБОР 1))

равен...

((V ФАЙЛ))

((V ФАЙЛ))

((V ФАЙЛ +))

((V ФАЙЛ))

((Q ВЫБОР 1 ФАЙЛ))

равен...

((V ФАЙЛ))

((V ФАЙЛ))

((V ФАЙЛ +))

((V ФАЙЛ))

((Q ВЫБОР 1 ФАЙЛ))

равен...

((V ФАЙЛ))

2(x - ln (x + 1)) + C

((V ФАЙЛ +))

((V ФАЙЛ))

2(x - ln (x + 1)) + C

((V ФАЙЛ))

((END))

методы его нахождения

Функция F(x) называется первообразной для функции f(x) на интервале (a, b), если в каждой точке этого интервала выполняется равенство: F¢(x)=f(x)

Пример 1. F(x)= sinx является первообразной для f(x)=cosx на интервале (-¥; +¥); т.к. (sinx) ¢=cosx

Теорема (свойство первообразной). Если– две первообразные для f(x) на интервале (a, b), то они могут отличаться лишь на постоянную, т.е. F1(x) = F2(x) +С, где С – постоянная

Следствие. Если функция F(x) – одна из первообразных для функции f(x), то любая её первообразная имеет вид: F(x)= F(x) +С, где С – постоянная.

Совокупность всех первообразных для для функции f(x) на интервале (a, b) называется неопределённым интегралом от функции f(x) и обозначается:

Имеется таблица основных неопределённых интегралов(табличные интегралы):

Неопределённый интеграл обладает следующими основными свойствами:

  1. dF(x) = f(x)dx
  2. òdF(x) = F(x) + C
  3. ò[Cf(x)dx] = Còf(x)dx
  4. ò[f(x)±g(x)]dx = òf(x)dx ± òg(x)dx



<== предыдущая лекция | следующая лекция ==>
ДЕ 1. Неопределенный интеграл | ДЕ 1. Неопределенный интеграл. Отыскание неопределённых интегралов с помощью свойств интегралов и табличных интегралов называется непосредственным интегрированием

Дата добавления: 2015-10-12; просмотров: 412. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия