Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Параметрические методы для других распределений





Из предыдущей главы мы узнали, как найти оптимальное f и его побочные продукты при нормальном распределении. Тот же ме­тод применим к любому другому распределению, где известна функция распределения вероятности (то есть интеграл плотно­сти распределения вероятности). О многих известных распреде­лениях и об их функциях распределения вероятности рассказано в приложении В.

К сожалению, большинство распределений торговых P&L плохо описываются функциями нормального и других распределений. В этой главе мы сначала обратимся к проблеме неопределенной природы распределения торговых P&L и далее изучим метод планирования сценария — естественное продолжение идеи оп­тимального/. Этот метод широко применяется и позволяет находить оптимальное f по ячеистым распределениям. Далее мы перейдем к следующей главе, посвященной опционам и одновре­менной торговле по нескольким позициям. Прежде чем смоделировать реальное распределение торговых P&L, мы должны найти метод сравнения двух распределений.

Тест Колмогорова-Смирнова (К-С)

Хи-квадрат тест, без сомнения, является наиболее популярным из всех методов сравнения двух распределений. Так как многие ориентированные на рынок при­ложения, помимо рассматриваемых в этой главе, часто используют хи-квадрат тест, то он описан в Приложении А. Однако для наших целей наилучшим методом будет тест К-С. Этот очень эффективный тест применим к неячеистым распреде­лениям, которые являются функцией одной независимой переменной (в нашем случае, прибыль за одну сделку).

Все функции распределения вероятности имеют минимальное значение 0 и мак­симальное значение 1. То, как они ведут себя между ними, и отличает их. Тест К-С измеряет очень простую переменную D, которая определяется как максимальное аб­солютное значение разности между двумя функциями распределения вероятности. Тест К-С достаточно прост. N объектов (в нашем случае сделок) нормируются (вычитается среднее значение, и полученная разность делится на стандартное от­клонение) и сортируются в порядке возрастания. Когда мы проходим эти отсор­тированные и нормированные сделки, накопленная вероятность рассматривае­мого количества сделок делится на N. Когда мы берем первую сделку в отсортиро­ванной последовательности с наименьшим стандартным значением, функция распределения вероятности (cumulative density function, далее — ФРВ) равна 1/N. Для каждого стандартного значения, которое мы проходим, приближаясь к наи­большему стандартному значению, к числителю прибавляется единица. В конце последовательности наша ФРВ будет равна N/N, или 1. Для каждого стандартного значения мы можем рассчитать теоретическое рас­пределение. Таким образом, мы можем сравнить фактическую функцию распре­деления вероятности с любой теоретической функцией распределения вероятно­сти. Переменная D, или статистика К-С (К-С statistic), равна наибольшему рас­стоянию между значением нашей фактической функции распределения вероятности и значением теоретического распределения ФРВ при этом же стан­дартном значении. При сравнении фактической ФРВ для данного стандартного значения с теоре­тической ФРВ для этого же стандартного значения мы должны также сравнить теоретическую ФРВ предыдущего стандартного значения с фактической ФРВ те­кущего стандартного значения.

Для того чтобы прояснить эту ситуацию, посмотрим на рисунок 4-1. Отметьте. что в точке А фактическая кривая находится выше теоретической. Поэтому мы сравниваем текущее значение фактической ФРВ с текущим теоретическим значе­нием для нахождения наибольшей разности. Однако в точке В фактическая кри­вая находится ниже теоретической. Поэтому мы сравниваем предыдущее факти­ческое значение с текущим теоретическим значением. Идея состоит в том, что в результате мы выберем наибольшую разность.

Для каждого стандартного значения нам надо взять абсолютное значение разно­сти между текущим значением фактической ФРВ и текущим значением теорети­ческой ФРВ. Нам также надо взять абсолютное значение разности между преды­дущим значением фактической ФРВ и текущим значением теоретической ФРВ. Повторив эту операцию для всех стандартных значений точек, где фактическая ФРВ делает скачок вверх на 1/N, и взяв наибольшую разность, мы определим пе­ременную D.

Рисунок 4-1 Тест К-С

Чем ниже значение D, тем больше похожи два распределения. Мы можем преоб­разовать значение D в уровень значимости с помощью следующей формулы:

где SIG = уровень значимости для данного D и N;

D = статистика К-С;

N = количество сделок, по которым определена статистика К-С;

% = оператор, означающий остаток после деления. Здесь J%2 дает остаток после деления J на 2;

ЕХР() = экспоненциальная функция.

Нет необходимости суммировать значения J от 1 до бесконечности. Уравнение сходится (обычно очень быстро) к определенному значению. После того как пре­дел достигнут (согласно допуску, установленному пользователем), нет необходи­мости продолжать суммирование значений.

Рассмотрим уравнение (4.01) на примере. Допустим, у нас есть 100 сделок, а значение статистики К-С равно 0,04:

J1 = (1 % 2) * 4 - 2 * ЕХР(-2 * 1^2 * (100^(1/2) * 0,04) л 2) =1*4-2* ЕХР(-2 * ^ 2 * (10 * 0,04)^ 2) = 2 * ЕХР(-2 * 1^2 * 0,^ 2) = 2*ЕХР(-2*1*0,16) = 2 * ЕХР(-0,32) = 2 * 0,726149 = 1,452298

Таким образом, нашим первым значением является 1,452298. Теперь прибавим следующее значение:

J2 = (2 % 2) * 4 - 2 * ЕХР(-2 * 2^ 2 * (100^ (1/2) * 0,04)^2) =0*4-2* ЕХР(-2 * 2^ 2 * (10 * 0,04)^ 2) = -2 * ЕХР(-2 * 2^ 2 * 0,4^ 2) = -2*ЕХР(-2*4*0,16) = -2*ЕХР(-1,28) = -2 * 0,2780373 = -0,5560746

Прибавив -0,5560746 к нашей текущей сумме 1,452298, мы получим новую теку­щую сумму 0,8962234. Затем снова увеличим J на 1, теперь оно будет равно 3, и решим уравнение. Получившееся значение прибавим к текущей сумме 0,8962234. Следует поступать таким образом и дальше, пока текущая сумма в пределах допуска не перестанет изменяться. В нашем примере предельное значе­ние будет равно 0,997. Этот ответ означает, что при 100 сделках и значении стати­стики К-С 0,04 мы можем быть уверены на 99,7%, что фактическое распределе­ние генерировано функцией теоретического распределения. Другими словами, мы можем быть на 99,7% уверены, что функция теоретического распределения представляет фактическое распределение. В данном случае это очень хороший уровень значимости.







Дата добавления: 2015-10-12; просмотров: 482. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия