Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Если целевая функция одной из взаимо двойственных задач не ограничена, то





а) в другой задаче целевая функция тоже не ограничена;
б) другая задача не имеет решения;
в) другая задача имеет единственное решение.

Если Х* оптимальный план исходной (прямой) задачи с целевой функцией f(x)= 6х1+4х2, а y – оптимальный план двойственной к ней с целевой функцией F(y) = 20у1+40у2+25у3, то пара оптимальных планов:

а) Х*= (25;20) Y*= (3;6;4)

б) Х*= (20;25) Y*= (2;2;4) ДА

в) Х*= (22;10) Y*= (4;5;6)

г) Х*= (21;23) Y*= (3;5;6)

Если х1, х2,х3, х4 булевы переменные то условие выбора любых двух вариантов из четырех возможных, запишется в виде:

х1+ х2+х3 +х4 =2

Если х1, х2,х3, х4 булевы переменные то условие выбора по крайней мере одного вариантов, запишется в виде

х1+ х2+х3 +х4 =1

Если в исходной задаче неизвестная Х1= 9/2, то решая ее методом ветвей и границ, новые подзадачи образуются ограничениями:

а) первая подзадача будет содержать условия исходной задачи и дополнительное ограничение Х1 ≤ 4, а вторая подзадача образуется ограничением Х1 ≥ 5

Если задача ЦЛО решается методом ветвей и границ на максимум функции и в первой подзадаче f1max = 2500,25; а во второй f2max = 1900,75. Какую из подзадач при продолжении решения необходимо ветвить дальше?

первую

Задача ЦЛО решается методом ветвей и границ на максимум функции и в первой подзадаче f1max = 361,36; а во второй f2max = 450,93. Какую из подзадач при продолжении решения необходимо ветвить дальше?

первую

Задачи исследования операций в экономике это:

оптимизации цели системы при ограничениях на множество допустимых состояний системы

Задача линейной оптимизации называется вырожденной, если:

а) в столбце свободных членов симплексной таблицы имеется по крайней мере один нулевой элемент;

б) в столбце свободных членов симплексной таблицы все элементы положительные;

в) если в симплексной таблице имеются нулевые элементы.

3а разрешающий столбец при нахождении максимума целевой функции задачи линейной оптимизации выбирается тот:

а) в котором находится наименьший отрицательный элемент строки функции, за исключением элемента, находящегося в столбце свободных членов (ДА)

б) в котором находится отрицательный элемент строки функции;

в) в котором все элементы неотрицательные. НЕТ

Задача целочисленного линейного программирования переменные:

Принимают целые значения, ограниченные сверху

Задачи решаемые методом математического программирования являются:

а) любой класс задач

б) класс экстремальных задач

в) класс задач на экстремум (максимум или минимум) функции со многими неизвестными ДА

Задачей нелинейного программирования является задача, у которой:

а) нелинейной является целевая функция

б) некоторые или все ограничения являются нелинейными

в) функция и ограничения являются нелинейными

г) выполняется хотя бы одно из условий а, б или в

Задача линейного программирования на максимум решается графическим методом. Укажите точку, в которой целевая функция достигает своего максимального значения.

а) А (НЕТ)

б) Б???

в) В

г) Г

Задача нелинейного программирования с ограничениями неравенствами может быть решена методом множителей Лагранжа если:

ограничения неравенства привести к равенствам и наложить условие неотрицательности на дополнительные переменные.







Дата добавления: 2015-10-12; просмотров: 528. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия