Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интегрирование выражений, содержащих квадратный трехчлен





Пусть подынтегральная функция содержит квадратный трехчлен .

1. Интегралы вида вычисляются следующим образом. Из квадратного трехчлена в знаменателе выделим полный квадрат:

 

 

 

где , если и , если .

Далее сделаем подстановку , откуда , . Получим

.

Последний интеграл является табличным и вычисляется по формулам 15, 16 таблицы основных неопределенных интегралов.

Пример 1. Вычислить интеграл .

Решение. Выделим в знаменателе полный квадрат:

.

Сделаем подстановку . Тогда и

.

Возвращаясь к переменной х, получим

.

 

2. Интегралы вида вычисляются аналогично интегралам пункта 1 путем выделения полного квадрата из квадратного трехчлена и последующей замены переменной. В результате исходный интеграл сводится к одному из табличных интегралов вида 12, 13.

 

Пример 2. Вычислить интеграл .

Решение. Преобразуем квадратный трехчлен следующим образом: . Получим . Положим , тогда , . В результате получаем

= . Переходя к переменной х, получим

.

 

3. Интегралы вида и вычисляются путем выделения полного квадрата из квадратного трехчлена и последующей замены переменной. Затем полученный интеграл разбивается на два: первый из этих интегралов можно вычислить, воспользовавшись формулами (2), (3), а второй интеграл является табличным.

 

Пример 3. Вычислить интеграл .

Решение. Так как , то по-ложим . Тогда и = [полученный интеграл разобьем на два] = . Второй из этих ин-тегралов – табличный: . Для нахождения первого воспользуемся следующим преобразованием дифференциала: . В результате получим = [воспользуемся формулой (3)] = . Окончательно имеем , где . Возвращаясь к переменной х, получим

.

 

 







Дата добавления: 2015-10-12; просмотров: 987. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия