Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интегрирование выражений, содержащих квадратный трехчлен





Пусть подынтегральная функция содержит квадратный трехчлен .

1. Интегралы вида вычисляются следующим образом. Из квадратного трехчлена в знаменателе выделим полный квадрат:

 

 

 

где , если и , если .

Далее сделаем подстановку , откуда , . Получим

.

Последний интеграл является табличным и вычисляется по формулам 15, 16 таблицы основных неопределенных интегралов.

Пример 1. Вычислить интеграл .

Решение. Выделим в знаменателе полный квадрат:

.

Сделаем подстановку . Тогда и

.

Возвращаясь к переменной х, получим

.

 

2. Интегралы вида вычисляются аналогично интегралам пункта 1 путем выделения полного квадрата из квадратного трехчлена и последующей замены переменной. В результате исходный интеграл сводится к одному из табличных интегралов вида 12, 13.

 

Пример 2. Вычислить интеграл .

Решение. Преобразуем квадратный трехчлен следующим образом: . Получим . Положим , тогда , . В результате получаем

= . Переходя к переменной х, получим

.

 

3. Интегралы вида и вычисляются путем выделения полного квадрата из квадратного трехчлена и последующей замены переменной. Затем полученный интеграл разбивается на два: первый из этих интегралов можно вычислить, воспользовавшись формулами (2), (3), а второй интеграл является табличным.

 

Пример 3. Вычислить интеграл .

Решение. Так как , то по-ложим . Тогда и = [полученный интеграл разобьем на два] = . Второй из этих ин-тегралов – табличный: . Для нахождения первого воспользуемся следующим преобразованием дифференциала: . В результате получим = [воспользуемся формулой (3)] = . Окончательно имеем , где . Возвращаясь к переменной х, получим

.

 

 







Дата добавления: 2015-10-12; просмотров: 987. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия