Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Ключевые понятия





 

Производная. Первообразная. Неопределенный интеграл. Интегрирование. Подынтегральная функция. Подынтегральное выражение. Переменная интегрирования. Интегральная кривая. Непосредственное интегрирование. Интегрирование заменой переменной. Интегрирование по частям.

 

 

Понятие первообразной функции. Неопределенный интеграл

 

Одной из основных задач дифференциального исчисления является отыскание производной заданной функции. В интегральном исчислении решается обратная задача: по данной функции найти функцию , производная которой была бы равна функции , т.е. . Искомую функцию называют первообразной для функции .

 

Определение 1. Функция называется первообразной для функции на интервале , если она дифференцируема на и для любого выполняется равенство

.

Например, функция является первообразной для функции на всей числовой прямой, так как при любом значении , т.е. выполняется равенство ; функция является первообразной для функции на всей числовой прямой, так как в каждой точке .

Задача отыскания по данной функции ее первообразной решается неоднозначно. Действительно, если является первообразной для функции , т.е. , то функция , где C – произвольная постоянная, также является первообразной для , так как . Например, для функции первообразной является не только функция , но и функция , так как . Таким образом, справедлива следующая теорема:

 

Теорема 1. Если функция является первообразной для функции на интервале , то множество всех первообразных для задается формулой , где C – произвольная постоянная.

Определение 2. Множество всех первообразных функций для функции на интервале называется неопределенным интегралом от функции на этом интервале и обозначается символом , где – знак интеграла; – подынтегральная функция; – подынтегральное выражение; – переменная интегрирования.

Таким образом:

,

где – некоторая первообразная для на интервале ; C – произвольная постоянная.

Например, поскольку функция является первообразной для функции , то .

Операция нахождения неопределенного интеграла от данной функции называется интегрированием этой функции. Интегрирование представляет собой операцию, обратную дифференцированию. Для того чтобы проверить, правильно ли выполнено интегрирование, достаточно продифференцировать результат и получить при этом подынтегральную функцию.

Пример 1. Проверить, что .

Решение. Продифференцируем результат интегрирования:

. Получили подынтегральную функцию, следовательно, интегрирование выполнено верно.

Геометрически неопределенный интеграл представляет собой семейство плоских кривых , смещенных относительно друг друга вдоль оси . График каждой первообразной (кривой) называется интегральной кривой.

 







Дата добавления: 2015-10-12; просмотров: 530. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия