Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Монотонные последовательности. Число e





Определение 1. Последовательность называется возрастающей (убывающей), если для любого n ();

Определение 2. Последовательность называется неубывающей (невозрастающей), если ().

Все перечисленные последовательности носят название монотонных. Возрастающие и убывающие последовательности называются также строго монотонными.

Рассмотрим некоторые примеры.

1. Последовательность , , , …, , … возрастает и ограничена.

2. Последовательность 1, 1, 2, 2, …, n, n, … неубывающая и неограниченная.

3. Последовательность , , , …, , …убывающая и ограниченная.

Можно показать справедливость следующей теоремы.

Теорема 1. Всякая монотонно возрастающая (убывающая) ограниченная сверху (снизу) последовательность имеет предел.

Рассмотрим последовательность и попытаемся применить к ней эту теорему.

Используя формулу бинома Ньютона, запишем в виде

.

Если перейти от к , то есть увеличить n на единицу, то в предыдущем разложении добавится новый, -й положительный член, а каждое из слагаемых в разложении увеличится, так как любой множитель в скобках вида заменится большим множителем вида . Отсюда следует, что , то есть последовательность монотонно возрастает.

Покажем, что эта последовательность ограничена сверху. Опустив в разложении все множители в скобках, мы увеличим выражение, так как каждая из скобок меньше единицы.

Следовательно,

(так как при ).

Но прогрессия имеет сумму

,

следовательно, .

Условия теоремы 1 выполнены; отсюда следует существование конечного предела последовательности . Этот предел обозначают буквой e. Это число играет исключительно важную роль в математике и ее приложениях. Доказывается, что является иррациональным числом.







Дата добавления: 2015-10-12; просмотров: 465. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия