Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Арифметическими операциями





Рассмотрим теоремы, отражающие свойства сходящихся последовательностей и облегчающие нахождение пределов.

Теорема 1. Если последовательности и имеют конечные пределы (, ), то:

1) их сумма (разность) также имеет конечный предел, причем ;

2) произведение их также имеет конечный предел, причем ;

3) отношение их также имеет конечный предел, причем .

■ Так как существуют и , то , , где и – бесконечно малые. Тогда . В этом равенстве – бесконечно малая по свойству бесконечно малых. Следовательно, .

Рассмотрим . В силу следствий из теоремы 8 выражение, стоящее в скобках, есть бесконечно малая; следовательно, .

Для доказательства 3) рассмотрим разность

.

Выражение в скобках есть бесконечно малая в силу следствий из теоремы 8. Так как , то, начиная с некоторого номера , где C – некоторое число. Тогда , начиная с некоторого номера. Следовательно, произведение будет бесконечно малым, а оно является разностью между переменной и числом . Значит, .■

Теорема 2. Если для последовательностей и для всех n и , , где a и b конечны, то .

■ Предположим, что . Возьмем число c так, что . Тогда существует такой номер , что ; с другой стороны, существует такой номер , что . Выберем . Тогда для одновременно выполняются оба неравенства , , откуда для . Полученное противоречие и доказывает теорему. ■

Теорема 3 (предел промежуточной последовательности). Если для последовательностей , , при всех n выполнены неравенства и , то .

■ Так как , то для любого произвольного существуют такие номера и , что

для , для .

Тогда для и

при , то есть

при , откуда следует, что . ■







Дата добавления: 2015-10-12; просмотров: 353. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия