Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Особые случаи. Неопределенности





Рассматривая выражения , , , мы предполагали, что последовательности и имеют конечные пределы и .

Выясним, каковы будут результаты, когда пределы последовательностей и (или один из них) бесконечны или когда предел знаменателя (в случае частного) будет равен нулю.

1. Пусть предел конечен, а . Тогда

.

Действительно, , так как величина бесконечно малая (обратная бесконечно большой ).

2. Если (конечный или бесконечный), а

, то .

В самом деле,

,

так как обратная величина стремится к нулю.

3. Если , а предел конечен, то (так как обратное отношение ).

4. Пусть . В этом случае предел частного может иметь различные значения или даже вовсе не существовать, это зависит от частного закона изменения переменных. Проиллюстрируем сказанное примерами. Пусть

, ; , .

Тогда . Если же положить

, , то .

При , .

Пусть , , тогда отношение не имеет предела.

Подводя итог рассмотренному, можно утверждать, что знание пределов и не позволяет судить о пределе их отношения; необходимо знать закон изменения переменных и непосредственно исследовать отношение . Чтобы характеризовать эту особенность, говорят, что выражение представляет неопределенность вида .

5. Подобное предыдущему обстоятельство возникает, когда , . Проиллюстрируем этот факт примерами:

, , ;

, , ;

, , ;

, , не имеет предела.

В этом случае говорят, что выражение является неопределенностью вида .

6. Рассмотрим далее произведение . Если существует отличный от нуля предел (конечный или бесконечный), а , то , так как обратная величина есть бесконечно малая (первый множитель имеет конечный предел, а второй стремится к нулю).

7. Если , а , то сталкиваемся с ситуацией, которая рассматривалась в пп. 4,5.

В самом деле, рассмотрим примеры:

, , ;

, , ;

, , ;

, , не имеет предела.

Рассмотренные примеры подтверждают тот факт, что выражение есть неопределенность вида .

8. Можно показать, что если , а имеет конечный предел, то .

9. Пусть и стремятся к бесконечности разных знаков. Этот случай также оказывается особым; различные возможности проиллюстрируем примерами:

, , ;

, , ;

, , ;

, , .

В силу рассмотренного говорят, что при , выражение является неопределенностью вида .

В соответствии с рассмотренным выше, мы можем сделать следующий вывод. При определении пределов суммы, произведения и частного по пределам последовательностей и , из которых они образуются, это невозможно сделать в случаях возникновения неопределенностей

, , , .

Нужно непосредственно исследовать выражение, учитывая закон изменения последовательностей. Это исследование называется раскрытием неопределенности.








Дата добавления: 2015-10-12; просмотров: 885. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия