Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основне рiвняння квантової механiки – рiвняння Шредiнгера





Рiвняння, що описує рух мiкрочастинки, повинне вiдтворювати її хвильовi властивостi, тобто повинне бути подiбним до хвильового рiвняння, що описує розповсюд­ження оптичних або акустичних хвиль (див. рівняння (3.58) в першому томі):

. (9.8)

Ми можемо мiркувати таким чином: якщо мiкро­частинка, яка рухається, має хвильовi властивостi i може бути охарактеризована довжиною хвилi, то її стан можна описати за допомогою деякої функцiї Y, яка повинна задовольняти хвильове рiвняння (9.8), тобто:

. (9.9)

Функцiя, що задовольняє хвильове рiвняння, може бути подана у такому виглядi:

Y = y (х) sin w t.

Знайдемо відповідні частиннi похiднi, а саме:

i пiдставимо їх в рiвняння (9.9), що в результатi дає

.

Враховуючи зв’язок мiж частотою і періодом , а також зв’язок мiж довжиною хвилі, швидкістю і періодом T i формулу (9.4) для довжини хвилі де Бройля, вiдношення w 2/ u 2 можна подати таким чином:

Тодi рiвняння (9.9) набуває такий вигляд:

(9.10)

де Еk – кiнетична енергiя частинки. Рiвняння (9.10) описує одновимiрний рух частинки. У випадку, коли частинка рухається в тривимірному просторi, рiвняння (9.10) матиме вигляд:

, (9.11)

або

(9.12)

де – так званий оператор Лапласа, який діє на хвильову функцію і дорівнює сумі всіх других просторових похідних від . Рiвняння (9.12) описує рух вiльної частинки.

Якщо частинка рухається в силовому полi, то її повна енергiя дорiвнює сумi кiнетичної та потенцiальної енергiй: Е = Ek + En , звiдки Еk = Е – Еn. У цьому випадку рiвняння (9.12) записується таким чином:

(9.13)

Рiвняння (9.13) – стацiонарне рiвняння Шредiнгера, запропоноване ним у 1926 році. Це рiвняння описує пове­дiн­ку електрона в атомi (тобто електрона, що рухається в полi ядра). Хвильова функцiя y (x, y, z), яка є розв’язком рiвняння Шредiнгера, не залежить вiд часу і характеризує стацiонарнi стани системи.

Спiввiдношення мiж y- функцiєю та частинкою, яку вона описує, аналогiчне спiввiдношенню мiж свiтловою хви­лею та фотоном. Квадрат амплiтуди свiтлової хвилi А 2 виз­начає ймовiрнiсть попадання фотона у вiдповiдну точку простору. Як показав М. Борн, квадрат амплiтуди хвильової функцiї | y |2 характеризує ймовiрнiсть знаходження частин­ки в данiй точцi простору, а | y |2 dv – ймовiрнiсть знаход­ження частинки в елементi об’єму dv. Таким чином, фiзич­ний змiст має не сама хвильова функцiя, а її квадрат. Слiд відзначити, що, на вiдмiну вiд оптичних хвиль, y- функцiя характеризує не електромагнiтну хвилю, а хвилю ймовiр­ностi.







Дата добавления: 2015-10-12; просмотров: 413. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия