ПРОЦЕСС МОДЕЛИРОВАНИЯ
Математическое моделирование предполагает исследовательскую стратегию, несколько отличающуюся от стратегий тех основных форм политологического исследования, которые описаны нами в других главах, поскольку оно основывается одновременно как на индукции, так и на дедукции. Сейчас мы обсудим общий процесс построения модели, в суммарном виде изображенной на рис. 17.1. Первый шаг при построении модели – индуктивный: это отбор наблюдений, относящихся к тому процессу, который [c.469] предстоит моделировать. Грубую аналогию этому шагу можно усмотреть в отборе переменных и исходной совокупности при проверке гипотезы, с той только разницей, что последняя операция обычно более формализована. Один из возможных путей представления такого начального шага состоит в формулировке проблемы, т.е. в принятии решения относительно того, что следует принимать во внимание, а чем можно пренебречь. Это очень важно в отношении последующих мер, поскольку в том случае, если изучаемый процесс слишком сложен для методов, доступных исследователю, или если исследователь станет изучать некорректно определенные переменные, то работа по моделированию не слишком продвинется. Успех в поиске интересной, нетривиальной, неизученной и при этом решаемой проблемы зависит от сочетания различных факторов – удачи, интуиции и личного опыта исследователя; этот поиск подобен поиску интересной теории в том виде, как он был описан в гл. 2. Моделирование обычно предполагает меньшее число переменных, нежели проверка гипотезы: последняя оперирует простыми процессами (например, линейной регрессией), относящимися к большому числу переменных, тогда как в моделях используются сложные процессы, относящиеся к малому числу переменных. Второй шаг заключается в переходе от определения проблемы к собственно построению неформальной модели. Неформальная модель – это набор таких инструментов, которые способны объяснить отобранные нами наблюдения, но при этом определены недостаточно строго и нельзя с точностью проверить степень их логической взаимоувязанности. К примеру, если объектом моделирования является гонка вооружений (см. пример 1), то неформальная модель могла бы выглядеть следующим образом: “Гонка вооружений происходит потому, что государства боятся вооружений, имеющихся у других государств; пределы ее ограничены стоимостью вооружений”. Это утверждение сообщает нам нечто о механизмах, движущих гонку вооружений, но для окончательного варианта модели оно недостаточно специфицировано. На этой стадии большинство разработчиков моделей рассматривают целый ряд наборов неформальных допущений, способных объяснить одни и те же данные; тем [c.470] самым они рассматривают несколько потенциальных моделей и пытаются решить, какая из них лучше всего отображает изучаемую проблему. Иначе говоря, разработчик модели старается найти различные способы установления логического соответствия между моделью и реальным миром. Это критический момент в процессе моделирования. Если лежащая в основе модели неформальная теория несостоятельна, то ее не спасет никакое количество изощренных математических приемов. Приобретя определенный опыт в моделировании, исследователь обычно переходит от неформальных моделей к поиску среди существующих формальных моделей такой, которая бы наиболее адекватно подходила к его наблюдениям. Формальная модель отличается от неформальной тем, что все допущения в ней сформулированы в математической форме. Существующие модели на самом деле представляют собой вполне конкретные наборы приемов, и, поскольку они уже кем-то изучались, возможные выводы из их исходных посылок уже известны, что придает определенное направление и дальнейшим разработкам. Вместо того чтобы иметь дело с произвольным набором неформальных допущений, опытный разработчик будет стремиться рассуждать в терминах “игра с нулевой суммой”, “игра "дилемма заключенного"”, “разностное уравнение первой степени”, “модель Даунса” и других хорошо отработанных моделей. Опытный разработчик использует отработанные модели для того, чтобы от рассуждений типа “Для решения этой задачи необходимо иметь некоторое количество мелких металлических резцов, расположенных в ряд на плоскости и способных при возвратно-поступательном движении разрушать клеточную структуру древесины” перейти к рассуждениям типа “Здесь требуется пила”. Третий шаг – это перевод неформальной модели в математическую модель. Такой перевод включает в себярассмотрение словесного описания неформальной модели и поиск подходящей математической структуры, способной отобразить те же самые идеи и процессы. Это, по всей видимости, самый сложный этап во всем процессе моделирования. Именно здесь могут вкрасться многочисленные ошибки и двусмысленности, поскольку в любом процессе перевода содержание одновременно и теряется, и расширяется. [c.471] Стадия перевода может таить в себе две опасности. Во-первых, неформальные модели имеют тенденцию быть неоднозначными, и обычно существует несколько способов перевода неформальной модели в математическую, но при этом альтернативные математические модели могут иметь совершенно различный смысл. На самом деле это одна из главных причин, изначально толкающих нас к применению математических моделей: язык математики лишен двусмысленностей и более точен, чем естественный язык, он позволяет исследовать скрытый смысл тончайших различий в формулировках, который плохо доступен исследованию посредством естественного языка. Вторая возможная опасность заключается в добавлении к неформальной модели тех имплицитных допущений, которые сопутствуют использованию конкретных математических методов. Это оказывается особенно существенным в тех случаях, где задействованы статистические методики и дифференциальное исчисление. Важнейшие формулы теории вероятности и дифференциального и интегрального исчисления опираются на несколько простых допущений, которые чрезвычайно полезны с математической точки зрения, но совсем необязательно соответствуют условиям политической и социальной жизни. Эти допущения в общих чертах соответствуют тому, что мы наблюдаем в мире природных явлений (и поэтому дифференциальное исчисление оказалось столь пригодным для моделирования самых различных природных процессов), но в том, что касается социального поведения, они отнюдь не всегда могут быть в равной степени применимы. Даже если некоторая конкретная модель была изначально рассчитана на отображение социальных ситуаций, тем не менее, надо постоянно учитывать наличие в ней имплицитных допущений и обращаться с ними с осторожностью. Перевод неформальной модели на язык математики – это еще один элемент в моделировании, где важную роль играют личный опыт разработчика и его способность к взвешенным оценкам. Во многих случаях можно сэкономить массу времени и усилий, делая определенные допущения, позволяющие легче оперировать с моделью на стадии ее математической обработки; в других случаях те же самые допущения могут вызвать значительное отклонение модели от [c.472] исходной неформальной теории. В процессе моделирования приходится считаться с обеими этими сторонами перевода. Особенности математической модели могут подвести исследователя к подгонке под нее некоторых допущений неформальной теории. С другой стороны, если неформальная теория выглядит осмысленно, а математическая модель – нет, то следует испробовать какую-то иную математическую версию данной модели. Например, если мы примем в качестве допущения, что причина, по. которой люди участвуют в голосовании, заключается в возможности оказать какое-то воздействие на результаты выборов посредством нарушения потенциальной случайной связи, а математический анализ показывает, что вероятность случайной связи настолько мала, что большинство избирателей в большинстве выборов только из-за этого голосовать не стали бы, то факт, что люди все-таки приходят на избирательные участки, означает, что мы, возможно, недооценили какие-то другие причины участия в голосовании, например чувство гражданской ответственности или желание выразить свое мнение. С другой стороны, наше математическое определение случайной связи, возможно, чересчур строго; может быть, люди рассматривают вероятность того, что в итоге выборов разрыв между кандидатами не превысит 1% общего числа голосов, как более чем случайную связь. Следующий этап – этап математической обработки формальной модели – является решающим в математическом моделировании. Именно здесь применяется весь арсенал математических методов – логических, алгебраических, геометрических, дифференциальных, вероятностных, компьютерных – для формального вывода нетривиальных следствий из исходных допущений модели. На стадии математической обработки мы обычно – вне зависимости от сути задачи – имеем дело с чистыми абстракциями и используем одинаковые математические средства, идет ли речь о гонке вооружений или о подпрыгивании мяча. Этот этап представляет собой дедуктивное ядро моделирования, заключающееся в поиске нетривиальных и непредвиденных выводов из правдоподобных допущений. Полученные выводы проходят через еще один процесс перевода – на сей раз с языка математики обратно на [c.473] естественный язык. Предосторожности, упомянутые нами в связи с переводом на язык формальной модели, сохраняют свое значение и здесь: ведь перевод с неизбежностью влечет за собой потерю и добавление какой-то информации и каких-то допущений. Этот заключительный перевод может оказаться едва ли не самым трудным этапом в процессе моделирования – как часто, глядя на ряд уравнений или графов, задаешься вопросом: “Что же это все может означать?” Хотя разработчик модели в целом заинтересован в получении вполне определенного результата, имеющего вполне определенный реальный смысл, но моделирование нередко порождает и неожиданные результаты, которые могут быть даже более интересными, нежели изначально ожидавшиеся. Литература по моделированию полна примеров того, как исследователь, взяв модель, разработанную кем-то другим, получил из нее интересные, не предвиденные ее автором результаты. Например, феномен “циклического голосования” (т.е. ситуации, когда три или четыре предложения голосуются по принципу простого большинства и при этом ни одно из них не может перевесить все остальные в случае попарного голосования) был известен как математический курьез с XVIII столетия. И только в 50-х годах нашего века стало ясным его значение; это произошло после того, как Кеннет Эрроу применил его в своей “теореме невозможности”, демонстрирующей существование некоторых фундаментальных противоречий во всех демократических избирательных системах. Далее исследователю нужно вернуться назад к первоначальным стадиям моделирования, с тем чтобы внести в модель определенные уточнения. Соответствуют ли полученные выводы тому, что от модели ожидалось изначально? Имеют ли эти выводы смысл в свете эмпирических наблюдений? Если да, то можно ли усовершенствовать модель так, чтобы получить и другие нетривиальные выводы? Можно ли ее сделать более общей? Можно ли получить те же выводы при более простом наборе исходных допущений? Если модель не несет в себе реального смысла, то, что было неверным – формальная модель или же исходная концептуализация? А может быть, какие-то имплицитные допущения помешали правильному переводу с языка неформальной теории на математический язык? В процессе моделирования эти вопросы следует держать в уме постоянно. К формальному [c.474] сравнению и уточнению модели можно возвращаться много раз, прежде чем станет возможной эмпирическая проверка, которая выступает в качестве окончательного этапа моделирования, необходимого для установления степени обоснованности модели. Эмпирическая проверка бывает нужна не всегда: в некоторых случаях исходные предположения описывают процесс исчерпывающим образом (это относится, например, к правилам избирательной процедуры), и выводы модели в проверке не нуждаются. Но обычно исходные допущения содержат факторы, в теоретической разработке модели полностью не специфицированные и нуждающиеся в оценке с опорой на фактические данные. Поскольку реально все модели социальных процессов предполагают значительный элемент случайности, эмпирические тесты помогают установить также и предсказательную силу модели. Проверка модели включает в себя те же самые этапы операционализации, измерения и статистического анализа, которые обсуждались нами в других главах, хотя для проверки математической модели нередко требуется определенная адаптация стандартных статистических методик. [c.475]
|