Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференциального кинетического уравнения





Определим константы дифференциального кинетического уравнения для следующей реакции:

аА + bB → продукты.

Зависимость скорости от концентраций выражается уравнением (4.3):

.

Прологарифмируем это выражение

. (4.4)

Так как величины k, n и m для рассматриваемой реакции (при T =const) являются постоянными и не зависят от концентрации реагентов, то для их нахождения достаточно определить зависимость скорости реакции от концентрации одного из реагентов при фиксированной концентрации другого реагента.

Пусть в трех опытах концентрация вещества А будет постоянной и равной [ A ]0.

Тогда в уравнении (4.4) сумма () будет тоже величиной постоянной.

Обозначим ее .

Тогда уравнение (4.4) можно переписать как

. (4.5)

Зависимость (4.5) представляет собой в координатах ln[ B ] – уравнение прямой линии, тангенс угла наклона которой к оси абсцисс численно равен порядку реакции по веществу В.

По экспериментальным данным строят график зависимости от ln[ B ] (рис. 4.2) и находят порядок реакции по веществу B

.

В последующих опытах определяют скорость реакции при различных исходных концентрациях вещества А и постоянной концентрации [ B ]0.

Находят порядок реакции по веществу А

.

Из уравнения (4.3) с учетом найденных порядков реакции по веществам А и В рассчитывают константу скорости

,

где , [ A ] i, [ B ] i – экспериментальные данные, относящиеся к одному опыту.

 

Рис. 4.2. Определение порядка реакции по веществу В







Дата добавления: 2015-10-15; просмотров: 449. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия