Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определенный интеграл.





Пусть функция определена на отрезке . Разобьем этот отрезок на n частей точками , выберем на каждом элементарном отрезке произвольную точку и обозначим через длину каждого такого отрезка.

Определение. Интегральной суммой для функции на отрезке называется сумма вида .

Определение. Определенным интегралом от функции на отрезке называется предел интегральной суммы при условии, что длина наибольшего из элементарных отрезков стремится к нулю: .

Для любой функции , непрерывной на отрезке , всегда существует определенный интеграл .

Для вычисления определенного интеграла от функции в том случае, когда можно найти соответствующий неопределенный интеграл , служит формула Ньютона – Лейбница: , то есть определенный интеграл равен разности значений первообразной при верхнем и нижнем пределах интегрирования.

При вычислении определенного интеграла методом замены переменной (способом подстановки) определенный интеграл преобразуется с помощью подстановки в определенный интеграл относительно новой переменной . При этом старые пределы интегрирования и , которые находятся из исходной подстановки: , . Таким образом, имеем .

Пример 23. Вычислить определенный интеграл: .

Решение:

.

Пример 24. Вычислить определенный интеграл: .

Решение: .

Пример 25. Вычислить определенный интеграл: .

.

Пример 26. Вычислить определенный интеграл: .

Решение: .

Пример 27. Вычислить определенный интеграл: .

Решение: положим , тогда , . Вычисляем новые пределы интегрирования: , . Поэтому

.

Пример 28. Вычислить определенный интеграл: .

Решение: преобразуем подкоренное выражение: . Положим , откуда . Найдем новые пределы интегрирования: , . Следовательно,

.

 

 


 







Дата добавления: 2015-10-15; просмотров: 531. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия