Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Производная сложной функции





Пусть , где является не независимой переменной, а функцией независимой переменной , т.е. . Таким образом, .В этом случае функция называется сложной функцией ,а переменная - промежуточным аргументом.

Производная сложной функции находится на основании следующей теоремы: если и – дифференцируемые функции своих аргументов, то производная сложной функции существует и равна произведению производной функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной .

Эта теорема распространяется и несложные функции, которые задаются с помощью цепочки, содержащей три звена и более.

Формулы дифференцирования

С – постоянная, и функции аргумента

1. 4. 7.  
2. 5.  
3. 6.    
Основные элементарные функции Сложные функции
1
2
3 10а
4 11а
5 12а
6 13а
7 14а
8 15а
9 16а
10 17а
11 18а
12 19а
13 20а
             

 

Пример 6. Найти производную функции .

Решение. Данная функция есть алгебраическая сумма функций. Дифференцируем ее, используя формулы 3, 5 и 8:

Пример 7. Найти производную функции .

Решение: применив последовательно формулы 4, 3, 5 и 8, имеем

.

Пример 8. Найти производную функции .

Решение. Применяя формулы 6, 3, 7 и 1, получим:

Пример 9. Найти производную функции и вычислить ее значение при

Решение. Это сложная функция с промежуточным аргументом . Используя формулы 8а и 13, имеем: .

Вычислим значение производной при .

.

Пример 10. Найти производную функции .

Решение. Используя правило дифференцирования произведения и соответствующие формулы нахождения производных, получим

.

Пример 11. Найти производную функции .

Решение: используя правило дифференцирования частного и соответствующие формулы нахождения производных, получим

Пример 12. Найти производную функции .

Решение: полагая , получим .

Пример 13. Найти производную функции .

Решение.

Производные высших порядков

Производная функции в общем случае является функцией от . Если от этой функции вычислять производную, то получим производную вто­рого порядка или вторую производную функции .

Второй производной функции называется производная от ее пер­вой производной .

Вторая производная функции обозначается одним из символов: , , .

Аналогично определяются и обозначаются производные любого порядка. Например, производная третьего порядка: , , .

Пример 14. Найти вторую производную функции .

Решение. Сначала найдем первую производную:

Дифференцируя еще раз, найдем вторую производную: .

Пример 15. Найти вторую производную функции

Решение. Сначала найдем первую производную этой сложной функции:

Дифференцируя еще раз, найдем вторую производную:







Дата добавления: 2015-10-15; просмотров: 412. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия