Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Производная сложной функции





Пусть , где является не независимой переменной, а функцией независимой переменной , т.е. . Таким образом, .В этом случае функция называется сложной функцией ,а переменная - промежуточным аргументом.

Производная сложной функции находится на основании следующей теоремы: если и – дифференцируемые функции своих аргументов, то производная сложной функции существует и равна произведению производной функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной .

Эта теорема распространяется и несложные функции, которые задаются с помощью цепочки, содержащей три звена и более.

Формулы дифференцирования

С – постоянная, и функции аргумента

1. 4. 7.  
2. 5.  
3. 6.    
Основные элементарные функции Сложные функции
1
2
3 10а
4 11а
5 12а
6 13а
7 14а
8 15а
9 16а
10 17а
11 18а
12 19а
13 20а
             

 

Пример 6. Найти производную функции .

Решение. Данная функция есть алгебраическая сумма функций. Дифференцируем ее, используя формулы 3, 5 и 8:

Пример 7. Найти производную функции .

Решение: применив последовательно формулы 4, 3, 5 и 8, имеем

.

Пример 8. Найти производную функции .

Решение. Применяя формулы 6, 3, 7 и 1, получим:

Пример 9. Найти производную функции и вычислить ее значение при

Решение. Это сложная функция с промежуточным аргументом . Используя формулы 8а и 13, имеем: .

Вычислим значение производной при .

.

Пример 10. Найти производную функции .

Решение. Используя правило дифференцирования произведения и соответствующие формулы нахождения производных, получим

.

Пример 11. Найти производную функции .

Решение: используя правило дифференцирования частного и соответствующие формулы нахождения производных, получим

Пример 12. Найти производную функции .

Решение: полагая , получим .

Пример 13. Найти производную функции .

Решение.

Производные высших порядков

Производная функции в общем случае является функцией от . Если от этой функции вычислять производную, то получим производную вто­рого порядка или вторую производную функции .

Второй производной функции называется производная от ее пер­вой производной .

Вторая производная функции обозначается одним из символов: , , .

Аналогично определяются и обозначаются производные любого порядка. Например, производная третьего порядка: , , .

Пример 14. Найти вторую производную функции .

Решение. Сначала найдем первую производную:

Дифференцируя еще раз, найдем вторую производную: .

Пример 15. Найти вторую производную функции

Решение. Сначала найдем первую производную этой сложной функции:

Дифференцируя еще раз, найдем вторую производную:







Дата добавления: 2015-10-15; просмотров: 412. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия