Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Логическое тождество (эквиваленция)





Операцию логического тождества обозначают символами =, ↔, ~.

Интуитивно можно догадаться, что высказывания эквивалентны (равносильны), когда их значения истинности одинаковы.

Например, эквивалентны высказывания: "железо тяжёлое" и "пух лёгкий", так же как и высказывания: "железо лёгкое" и "пух тяжёлый". Обозначим эквиваленцию символом ↔ и запись "А ↔ В" будем читать "А эквивалентно В", или "А равносильно В", или "А, если и только если В".

Таким образом, эквиваленцией двух высказываний А и В называется такое высказывание, которое истинно тогда и только тогда, когда оба эти высказывания А и В истинны или оба ложны.

Высказывание типа "А, если и только если В" можно заменить высказыванием "Если А, то В и, если В, то А".

Следовательно, функцию эквиваленции можно заменить комбинацией функций импликации и конъюнкции.

Запишем таблицу истинности для эквиваленции (таблица 5):

Таблица 5 – Таблица истинности функции логического тождества (эквиваленция)

А В А ↔ В
     
     
     
     

Приведём примеры записи сложных высказываний с помощью обозначения логических связок:

"Быть иль не быть – вот в чём вопрос" (В. Шекспир) А V A ↔ В.

"Если хочешь быть красивым, поступи в гусары" (К. Прутков) А ↔ В.

2.6. Операция «ИСКЛЮЧАЮЩЕЕ ИЛИ»

Операция исключающее ИЛИ (неравнозначность, сложение по модулю два) обозначается символом и отличается от логического ИЛИ только при A=1 и B=1.

Таким образом, неравнозначность двух высказываний Х1 и Х2 называют
такое высказывание Y, которое истинно тогда и только тогда, когда одно из этих высказываний истинно, а другое ложно
.

Определение данной операции может быть записано в виде таблицы
истинности (таблица 6):

Таблица 6 – Таблица истинности операции «ИСКЛЮЧАЮЩЕЕ ИЛИ»

Х1 Х2 Y
     
     
     
     

Как видно из таблицы 6, логика работы элемента соответствует его названию.

Это тот же элемент «ИЛИ» с одним небольшим отличием. Если значение на обоих входах равно логической единице, то на выходе элемента «ИСКЛЮЧАЮЩЕЕ ИЛИ», в отличие от элемента «ИЛИ», не единица, а ноль.

Операция «ИСКЛЮЧАЮЩЕЕ ИЛИ» фактически сравнивает на совпадение два двоичных разряда.

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет своё название и обозначение (таблица 7).

Таблица 7 – Основные логические операции

Обозначение операции Читается Название операции Альтернативные обозначения
  НЕ Отрицание (инверсия) Черта сверху
^ И Конъюнкция (логическое умножение) &
v ИЛИ Дизъюнкция (логическое сложение) +
Если … то Импликация
Тогда и только тогда Эквиваленция ~
XOR Либо … либо ИСКЛЮЧАЮЩЕЕ ИЛИ (сложение по модулю 2)

 

 

3. Порядок выполнения логических операций
в сложном логическом выражении

Система логических операций инверсии, конъюнкции, дизъюнкции позволяет построить сколь угодно сложное логическое выражение.

При вычислении значения логического выражения принят определённый порядок выполнения логических операций.

1. Инверсия.

2. Конъюнкция.

3. Дизъюнкция.

4. Импликация.

5. Эквивалентность.

Для изменения указанного порядка выполнения операций используются
скобки.








Дата добавления: 2015-10-15; просмотров: 1358. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия