Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Аналитическое решение нестационарных задач теплопроводности





1.1.1. Охлаждение неограниченной пластины ()

 

Постановка задачи: Дана пластина толщиной 2δ. Если толщина пластины мала по сравнению с длиной и шириной, то такую пластину обычно считают неограниченной. При заданных граничных условиях коэффициент теплоотдачи α одинаков для всех точек поверхности пластины. Изменение температуры происходит только в одном направлении Х, в двух других направлениях температура не изменяется , следовательно, в пространстве задача является одномерной.

Начальное распределение температуры задано: t(x,0)=t0. Охлаждение происходит в среде с постоянной температурой tж=const. На обеих поверхностях отвод тепла осуществляется при постоянном во времени коэффициенте теплоотдачи a. Отсчет температуры пластины для любого момента времени будем вести от температуры окружающей среды, т.е. . Так как задача в пространстве одномерная, то дифференциальное уравнение примет вид:

 

. (1.2)

Начальные условия: при τ = 0 υ = υо.

 

Рис. 1.1. К охлаждению плоской неограниченной пластины

 

При заданных условиях охлаждения задача становится симметричной и начало координат удобно поместить на оси пластины, как показано на рис. 1.1. При этом граничные условия на оси и на поверхности пластины запишутся так:

на оси пластины х = 0 ;

на поверхности пластины при х = δ .

Дифференциальное уравнение (1.2) совместно с начальными и граничными условиями однозначно формируют поставленную задачу. Решение дифференциального уравнения (1.2) с учетом начальных и граничных условий и даст искомое распределение температуры в плоской пластине.

Решением дифференциального уравнения (1.2) является:

, (1.3)

где - корни характеристического уравнения

; (1.4)

- безразмерное число Био.

Наиболее просто характеристическое уравнение (1.4) можно решить графическим методом. Обозначим левую часть уравнения (1.4) через , а правую – через . Пересечение котангенсоиды у1 с прямой у2 даст нам значение корней характеристического уравнения.

 

Рис. 1.2. К решению уравнения (1.4)

 

Из рис. 1.2 следует, что имеется бесконечное множество значений величины μn, причем каждое последующее больше предыдущего:

μ1< μ2< μ3<…< μn<…

 

1.1.2. Охлаждение бесконечного цилиндра ()

Цилиндр радиусом rо отдает тепло окружающей среде через свою боковую поверхность; коэффициент теплоотдачи α во всех точках поверхности одинаков и остается постоянным на протяжении всего периода охлаждения. Температура среды tж постоянна. Начальное распределение температуры задано: t(r,0)=t0. Отсчет температуры цилиндра будем вести, как и в предыдущем разделе, от температуры окружающей среды . Требуется найти распределение температуры внутри цилиндра.

При этих условиях уравнение теплопроводности принимает вид:

. (1.5)

Граничные и начальные условия:

при τ = 0 и 0 ≤ r ≤ ro ;

при τ > 0 и r = 0 ;

при τ > 0 и r = rо .

Решением дифференциального уравнения (1.5) является:

, (1.6)

где Jо, J1 – функции Бесселя первого рода нулевого и первого порядка; - корни характеристического уравнения

; (1.7)

- безразмерное число Био.

Функции Бесселя первого рода n- го порядка (n=0,1,2,..) может вычисляться разложением в ряд:

.

При вычислении функции Бесселя число членов ряда задать равным 20.

 

1.1.3. Охлаждение шара ()

Рассмотрим охлаждение шара радиусом r0 в среде с постоянной температурой и с постоянным коэффициентом теплоотдачи α на его поверхности. Температура среды tж постоянна. Начальное распределение температуры задано: t(r,0)=t0. Отсчет температуры шара будем вести, как и в предыдущих разделах, от температуры окружающей среды . Требуется найти распределение температуры внутри шара.

При этих условиях уравнение теплопроводности принимает вид:

. (1.8)

Граничные и начальные условия:

при τ = 0 и 0 ≤ r ≤ ro ;

при τ > 0 и r = 0 ;

при τ > 0 и r = rо .

Решением дифференциального уравнения (1.8) является:

, (1.9)

где - корни характеристического уравнения

; (1.10)

- безразмерное число Био.







Дата добавления: 2015-10-15; просмотров: 950. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия