Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Аналитическое решение нестационарных задач теплопроводности





1.1.1. Охлаждение неограниченной пластины ()

 

Постановка задачи: Дана пластина толщиной 2δ. Если толщина пластины мала по сравнению с длиной и шириной, то такую пластину обычно считают неограниченной. При заданных граничных условиях коэффициент теплоотдачи α одинаков для всех точек поверхности пластины. Изменение температуры происходит только в одном направлении Х, в двух других направлениях температура не изменяется , следовательно, в пространстве задача является одномерной.

Начальное распределение температуры задано: t(x,0)=t0. Охлаждение происходит в среде с постоянной температурой tж=const. На обеих поверхностях отвод тепла осуществляется при постоянном во времени коэффициенте теплоотдачи a. Отсчет температуры пластины для любого момента времени будем вести от температуры окружающей среды, т.е. . Так как задача в пространстве одномерная, то дифференциальное уравнение примет вид:

 

. (1.2)

Начальные условия: при τ = 0 υ = υо.

 

Рис. 1.1. К охлаждению плоской неограниченной пластины

 

При заданных условиях охлаждения задача становится симметричной и начало координат удобно поместить на оси пластины, как показано на рис. 1.1. При этом граничные условия на оси и на поверхности пластины запишутся так:

на оси пластины х = 0 ;

на поверхности пластины при х = δ .

Дифференциальное уравнение (1.2) совместно с начальными и граничными условиями однозначно формируют поставленную задачу. Решение дифференциального уравнения (1.2) с учетом начальных и граничных условий и даст искомое распределение температуры в плоской пластине.

Решением дифференциального уравнения (1.2) является:

, (1.3)

где - корни характеристического уравнения

; (1.4)

- безразмерное число Био.

Наиболее просто характеристическое уравнение (1.4) можно решить графическим методом. Обозначим левую часть уравнения (1.4) через , а правую – через . Пересечение котангенсоиды у1 с прямой у2 даст нам значение корней характеристического уравнения.

 

Рис. 1.2. К решению уравнения (1.4)

 

Из рис. 1.2 следует, что имеется бесконечное множество значений величины μn, причем каждое последующее больше предыдущего:

μ1< μ2< μ3<…< μn<…

 

1.1.2. Охлаждение бесконечного цилиндра ()

Цилиндр радиусом rо отдает тепло окружающей среде через свою боковую поверхность; коэффициент теплоотдачи α во всех точках поверхности одинаков и остается постоянным на протяжении всего периода охлаждения. Температура среды tж постоянна. Начальное распределение температуры задано: t(r,0)=t0. Отсчет температуры цилиндра будем вести, как и в предыдущем разделе, от температуры окружающей среды . Требуется найти распределение температуры внутри цилиндра.

При этих условиях уравнение теплопроводности принимает вид:

. (1.5)

Граничные и начальные условия:

при τ = 0 и 0 ≤ r ≤ ro ;

при τ > 0 и r = 0 ;

при τ > 0 и r = rо .

Решением дифференциального уравнения (1.5) является:

, (1.6)

где Jо, J1 – функции Бесселя первого рода нулевого и первого порядка; - корни характеристического уравнения

; (1.7)

- безразмерное число Био.

Функции Бесселя первого рода n- го порядка (n=0,1,2,..) может вычисляться разложением в ряд:

.

При вычислении функции Бесселя число членов ряда задать равным 20.

 

1.1.3. Охлаждение шара ()

Рассмотрим охлаждение шара радиусом r0 в среде с постоянной температурой и с постоянным коэффициентом теплоотдачи α на его поверхности. Температура среды tж постоянна. Начальное распределение температуры задано: t(r,0)=t0. Отсчет температуры шара будем вести, как и в предыдущих разделах, от температуры окружающей среды . Требуется найти распределение температуры внутри шара.

При этих условиях уравнение теплопроводности принимает вид:

. (1.8)

Граничные и начальные условия:

при τ = 0 и 0 ≤ r ≤ ro ;

при τ > 0 и r = 0 ;

при τ > 0 и r = rо .

Решением дифференциального уравнения (1.8) является:

, (1.9)

где - корни характеристического уравнения

; (1.10)

- безразмерное число Био.







Дата добавления: 2015-10-15; просмотров: 950. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия