Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение будущей стоимости





Понятие будущей стоимости основано на принципе неравноценности денег, относящихся к разным моментам времени. Этот принцип заключается в том, что вложения, сделанные сегодня, в будущем составят бoльшую величину.

Другими словами, сумма денег, полученная сегодня, больше той же суммы, полученной завтра. С учетом этого можно сформулировать своеобразное финансовое «кредо», суть которого заключается в следующем. Если предстоит получить некоторую фиксированную сумму денег, то желательно сделать это как можно быстрее, не откладывая процедуру получения на более поздний срок. И наоборот, если фиксированную сумму денег требуется выплатить, то выплату следует оттянуть на более поздний срок.

Функция БС рассчитывает будущее значение единой суммы вклада или займа на основе постоянной процентной ставки и будущую стоимость периодических постоянных платежей.

Задача №1. Какая сумма окажется на счете в банке, если 27000 рублей положены на десять лет под 13,5% годовых, начисляемых каждые полгода. При решении задачи использовать встроенную функцию БС.

Решение. Для вычисления будущего значения единой суммы используются аргументы Пс, Ставка и Кпер. В этом случае формула для вычисления будущей величины (суммы) примет вид:

= БС (Ставка; Кпер;; Пс)

Значение для процентной ставки за период начисления: 13,5% / 2 = 6,75%. Общее число периодов начисления процентов: 10 ´ 2 = 20. Поскольку сумма вкладывается, она указывается как отрицательное число: -27000. При решении данной задачи диалоговое окно функции БС, отображаемое Мастером функций, имеет вид, показанный на рис. 5.

Рис. 5 Диалоговое окно для функции БС

Таким образом, при выполнении заданных в задаче условий через 10 лет на счете в банке окажется 99706 руб. 03 коп. Для сравнения приведем фрагмент листа Excel (рис. 6), на котором выполнен расчет наращенной суммы с использованием базовой формулы (2.4) для сложных процентов (см. Лабораторную работу 1).

Рис. 6 Расчет по базовой формуле (2.4) для сложных процентов

Задача №2. Какая сумма будет на счете в банке, если вклад размером 5000 р. размещен под 12% годовых на три года, а проценты начисляются каждый квартал. Расчеты выполнить с помощью функции БС и базовой формулы для сложных процентов (2.4) из Лабораторной работы 1.

Задача №3. Какая сумма будет на счете в банке, если вклад размером 10000 р. размещен под 10% годовых на пять лет, а проценты начисляются ежемесячно. Расчеты выполнить с помощью функции БС и базовой формулы для сложных процентов(2.4) из Лабораторной работы 1.

Задача №4. На сберегательный счет в банке вносятся платежи по 300 р. в начале каждого месяца (вар.1). Рассчитать, какая сумма окажется на счете через три с половиной года при годовой процентной ставке 13,5%. Сравнить полученную сумму с будущим значением счета, если платежи вносятся в конце каждого месяца (вар.2).

Решение. В данном случае производятся периодические платежи, поэтому в расчетах используется функция БС следующего вида:

БС (Ставка; Кпер; Плт;; Тип)

Для конкретных значений, заданных в условии задачи, соответствующие формулы примут вид:

для (вар.1) =БС(13,5%/12;3,5*12;-300;;1)

для (вар.2) =БС(13,5%/12; 3,5*12;-300)

Окончательное решение задачи представлено на рис. 7. Из него можно сделать вывод, что первый вариант предпочтительнее второго, поскольку он обеспечивает большее будущее значение.

Вар.1

Вар.2

Рис. 7 Расчеты для двух вариантов периодических платежей

Задача №5. Рассматриваются два варианта инвестирования денежных средств в течение пяти лет: в начале каждого года под 25% годовых или в конце каждого года под 35% годовых. Рассчитать, какая сумма окажется на счете в конце пятого года для каждого из вариантов, если ежегодный взнос составляет 300 тыс. р.







Дата добавления: 2015-10-15; просмотров: 647. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия