Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференциальные уравнения с разделяющимися переменными. Однородные уравнения.





Практическое занятие 3 -2 часа

Дифференциальные уравнение первого порядка.

Уравнение с разделяющимися переменными.

Однородные дифференциальные уравнения

Основные понятия.

Уравнение называется дифференциальным относительно некоторой искомой функции, если оно содержит хотя бы одну производную этой функции. дифференсиального уравнения совпадает(по определению) с порядком наивысшей производной, входящей в это уравнение.

Если искомая функция у является функцией одного аргумента х, то дифференциальное уравнение называется обыкновенным. Если же искомая функция зависит от нескольких аргументов, то дифференциальное уравнение называется уравнением в частных производных.

Например, уравнение , где - является обыкновенным дифференциальным уравнением первого порядка, а где - дифференциальным уравнением в частных производных первого порядка.

В общем случае дифференциальное уравнение первого порядка может быть записано в виде

(1)

или, если разрешить его относительно , в явном виде:

. (2)

 

Дифференциальные уравнения с разделяющимися переменными. Однородные уравнения.

Определение. Уравнение вида

(3)

называется дифференциальным уравнением с разделенными переменными.

Его общим интегралом будет

где С- произвольная постоянная.

Определение. Уравнение вида

(5)

или

(6)

а также уравнения, которые с помощью алгебраических преобразований приводятся к уравнениям (5) или (6), называются уравнениями с разделяющимися переменными.

Разделение переменных в уравнениях (5), (6) выполняется следующим образом. Предположим, что N1(y)≠0, M2(x)≠0, и разделим обе части уравнения (5) на . Обе части уравнения (1.3) умножим на dx и разделим на f2(y)≠0. В результате получим уравнения с разделенными переменными (т.е. уравнения вида (1.1)):

которые интегрируются, согласно формуле (4):

Пример 1. Найти общее решение дифференциального уравнения

(7)

►Предположив, что и разделив обе части данного уравнения на получим уравнение с разделенными переменными

Интегрируя его, последовательно находим (произвольную постоянную можно представить в виде ):

Последнее равенство является общим интегралом уравнение (7). При его нахождении были приняты ограничения Однако функции также является решениями исходного уравнения,что легко проверяется; с другой стороны, они получаются из общего интеграла при С=0. Следовательно, частные решения уравнения (1).◄

Пример 2. Найти частное решение уравнения

удовлетворяющее начальному условию .

►Запишем данное уравнение в дифференциальной форме:

Теперь разделим переменные:

Проинтегрируем последнее уравнение:

,

Получили общее решение исходного уравнения.

Использовав начальное условие, определив значение произвольной постоянной:

Следовательно,частное решение исходного уравнения имеет вид

.◄







Дата добавления: 2015-10-15; просмотров: 457. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия